
L O G 0
for the Apple 11

TECHNICAL
MANUA L

L O G 0
for the Apple 11

TECHNICAL
MANUAL

Harold Abelson and Leigh Klotz, Jr.

Logo Project
Massachusetts Institute of Technology

Terrapin, Inc.
222 Third Street

Cambridge, Massachusetts 02142
(617) 492-8816

Copyright © 1982, 1983, 1984 Terrapin, Inc.
Copyright © 1981 Massachusetts Institute of Technology

Table of Contents

Table of Contents

1. Preparing to Use Logo

1.1. Configuration
1.2. The Keyboard
1.3. Loading and Starting Logo

1.3.1. On Apples with Autostart ROM
1.3.2 . On Apples without Autostart ROM

1.4 . Bugs in the Logo System

2. Use of the Logo System

2.1. Modes of Using the Screen
2.1 .1. Nodraw Mode
2.1.2 . Edit Mode
2.1 .3. Draw Mode

2.2. Editing
2.2.1. Line Editor
2.2.2. Screen Editor

2.3. Using Apple Peripherals
2.3.1. Printing Procedures on a Printer
2.3.2. Printing Pictures

2.4 . Color Control
2.4.1. Drawing on Colored Backgrounds
2.4.2 . Drawing without Color Control

2.5. The Logo File System
2.5.1 . Disk Files
2.5.2. Saving Pictures
2.5.3. Configuring File Diskettes

3. Logo System Primitives

3.1. Graphics Commands
3.2. Numeric Operations
3 .3 . Word and List Operations

3

3
3
5

5
6
6

9

9
9
9

10
12
13
13
16
17
18
20
20
21
21
22 .
23
23

25

25
28
29

ii Logo for the Apple II: Technical Manual

3.4. Defining and Editing Procedures
3.5. Naming
3.6. Conditionals
3. 7. Control
3.8 . Input and Output
3.9. Filing and Managing Workspace
3.10. Debugging
3.11. Miscellaneous Commands

4. The Utilities Disk

4.1. Program Descriptions
4.1 .1. Demonstration Programs

5. Changing the Turtle Shape

6. Assembly Language Interfaces to Logo

6.1 . . EXAMINE and .DEPOSIT
6.2. Writing Your Own Machine-Language Routines
6.3. The Logo Assembler

6.3.1. Using the Assembler to Write 1/0 Routines
6.3.2. Syntax of Input to the Assembler
6.3 .3 . Saving Assembled Routines on Disk

6.4 . Example: Generating music
6.5. Useful Memory Addresses

7. Miscellaneous Information

7.1 . Using the Logo System as a Text Editor
7.1.1 . Printing Files

7.2. Self-starting files
7.3 . Printing to Disk Files
7.4. Various System Parameters
7.5 . Memory Organization Chart

Index

31
33
33
34
36
38
39
40

43

44
49

53

59

59
60
62

63
64
67
67
73

77

77
78
79
80
82
85

87

CHANGES FOR TERRAPIN LOGO VERSION 3.0

Version 3.0 of Terrapin Logo differs from versions 1.0-1.3 in the following respects:

The command to kill a line in the editor is now <CTRL>X instead of

<CTRL>K. (This change was necessary to permit use of all four cursor keys.)

The most recently deleted line/region can now be Yanked back into the editor

with <CTRL>Y .

The <DELETE> key on the Apple lie can be used to delete backwards one

character (just as the <ESC> key does). All four arrow keys may be used in

the editor to move the cursor .

Six new primitives have been added: MEMBER?, EMPTY?, ITEM, COUNT,

LOCAL, SETDISK

MEMBER? takes two inputs, and outputs "TRUE if the first is a member of

the second .

MEMBER? "A "QUARK outputs "TRUE

MEMBER? "A [A B C] outputs "TRUE

MEMBER? "Z [A B CJ outputs "FALSE

EMPTY? outputs "TRUE if its input is the empty word or the empty list.

EMPTY? " outputs "TRUE

EMPTY? [J outputs "TRUE

EMPTY? "BOB outputs "FALSE

ITEM takes two inputs, a number and a list/word, and outputs the nth

element of the second input.

ITEM 3 "TURTLE outputs "R

ITEM 2 [ED RALPH TRIXIE] outputs "RALPH

ITEM 3 [FRED ETHEL [UTILE RICKY]] outputs [UTILE RICKY]

COUNT returns the number of elements in its input, which can be either a

word or a list.

COUNT "ABC outputs 3

COUNT [SNEEZY GRUMPY SLEEPY DOC] outputs 4
COUNT [SNEEZY GRUMPY [SNOW WHITE]] outputs 3

LOCAL allows the creation of a local variable not declared in the title line , e.g.
TO DEMO

LOCAL "STUFF

MAKE "STUFF REQUEST

IF EMPTY? :STUFF PRINT [SHY?] ELSE PRINT :STUFF
END

SETDISK takes two inputs , a drive number and a slot number, and directs all
subsequent file commands to the specified drive . Default is SETDISK 1 6.

Garbage collection of truly worthless atoms (GCTWA) has been added, with
the result that the error message NO STORAGE LEFT! does not crop up
inexplicably during long sessions .

The command to recall the previous line in immediate mode , <CTRL>P, can
now be used after the REPEAT, RUN, and DEFINE commands as well.

Self-starting files can now be created more easily . Simply create a global
variable named STARTUP. Its value should be a list containing the name(s) of
the procedure(s) to be automatically run when the file is read in.

For example, if you tell Logo MAKE "STARTUP (FOO) and then save the
workspace (SAVE " BAR), Logo will run FOO whenever the file BAR is read in.

PO, SAVE, EDIT, and ERASE can now take a list of procedures as input. The
PSAVE utility is thus obsolete ; now you may type (SAVE " FILENAME [PROC1
PROC2 PROC3 ...]) instead . You must type the parentheses.

The DOS primitive no longer supports the MON, NOMON , and VERIFY
options. The space following the option name is no longer unnecessary ; for
instance, typing DOS [BLOADPICTURE] will give an error. Adding a space
after BLOAD will correct the problem . Also, addresses given to the DOS
primitive may be express ed in either decimal or hexadecimal form .

The changes to the DOS also allow you to read Apple DOS text files. A
particular effect of this is that Apple (LCSI) Logo files can be read into
Terrapin Logo using the standard READ primitive. (Of course , the procedures
in such files will not execute properly until syntax corrections are made.)

Preface 1

Preface

This is a reference manual for an implementation of the Logo system for
the Apple II computer . The configuration required to run Logo on the
Apple is an Apple II computer with one "floppy disk" drive and 48K bytes
of memory, and with an additional 16K memory extension. The system
includes the Logo language together with fully integrated interactive
"turtle " graphics, screen editor, and disk file system.1 The present manual
assumes that the reader is generally familiar with Logo and Logo
programming, and provides technical information about the
implementation of Logo for the Apple II, together with the list of primitive
commands included in the system.

This implementation of Logo was carried out by the Logo Group at the
Massachusetts Institute of Technology, in a project that was partially
supported by grants from the National Science Foundation. The
interpreter was implemented by Stephen Hain and Leigh Klotz. The text
editor , graphics. and file systems were implemented by Patrick
Sobalvarro . This work is based on previous Logo systems developed by
members of the MIT Logo Group with support from the National Science
Foundation , and on a specification of the Logo interpreter developed at
MIT with support from Texas Instruments, Inc. The Logo for the Apple II
implementation project is under the supervision of Professor Harold
Abelson.

11n addition , the present implementation is designed so that people familiar with
programming in assembly language on the Apple can modify and extend the Logo system's
capabilities . interlace it to new peripherals, and so on. To aid in this process, the Logo disk
includes a Logo program written by Leigh Klotz that serves as a 6502 assembler .

Preparing to Use Logo

Chapter 1
Preparing to Use Logo

3

This chapter discusses the hardware configuration required to run
Logo and points out some uses of the Apple keyboard that are
idiosyncratic to the Logo system. It also describes how to load and start
Logo on the Apple.

1.1. Configuration

This version of Logo requires an Apple II or Apple II Plus computer,
together with a "floppy disk" drive, 48K of memory, and an additional 16K
memory extension .1 The system includes two DOS 3.3 diskettes. One is
the Logo Language disk, used for starting Logo. The other is the Logo
Utilities diskette, containing the Logo programs described on page 43.

In addition to the Language diskette and the Utilities diskette, you will
need diskettes for saving programs that you write. The procedure for
creating Logo tile diskettes is explained in section 2.5.3.

1.2. The Keyboard

There are a few differences between the way that the Apple keyboard is
used in Logo, as opposed to other languages such as BASIC and Pascal.
These are explained in the paragraphs below.

The SHIFT key
Logo, like most Apple II systems, uses only uppercase letters, so the

shift key is not used for typing capital letters. The shift key is used,
however, when a given key contains two different symbols. For instance,

1Two popular memory extensions that can be used for Logo are the "Language Card"
distributed by Apple Computer , Inc. and the RAMCard distributed by Microsoft Consumer
Products .

4 Logo for the Apple II: Technical Manual

the character"(" is typed as shift-9.

Brackets
Logo uses the open and close bracket characters"[" and "]". These

are not marked on any key on the Apple keyboard. They are typed (when
using Logo) as shift -N and shift-M, respectively. Included with your Logo
package is a set of transparent stickers with brackets and other special
characters on them. If you haven't already done so, you should affix these
stickers to your keyboard as indicated in the instructions attached to the
stickers.

The CTRL key
The key on the lower left of the keyboard marked CTRL (abbreviation for

"control'') is used to input so-called "control characters". CTRL is used
like a shift key. For example, to type "control G" hold down the key
marked CTRL and press the "G" key (rather than trying to press both CTRL

and "G" simultaneously). Throughout this manual, we specify control
symbols by the prefix "crnL", as in "CTRL·G".

The arrow keys
On the right hand side of the Apple keyboard there are two keys marked

with left and right -arrows. These are used in editing, to move the cursor to
the left and right.

The ESC key
The key marked ESC (abbreviation for "escape") located at the upper

left of the keyboard is also used in Logo editing. When pressed, it deletes
the previous character that was typed. You might want to write the word
"DELETE" on the ESC key.

The REPEAT key
If you type a character and then hold down the key marked REPEAT, the

keyboard will repeatedly transmit the character for as long as REPEAT is
held down. REPEAT is occasionally useful in editing, in combination with

Preparing to Use Logo 5

the arrow keys.

The RESET key
When using Logo, Do not press the RESET key, ever! The Apple RESET

mechanism unfortunately has been designed so as to be incompatible
with the use of complex interactive programming languages like Logo,
and pressing RESET will abort operation of the Logo system. Over the
years, Apple users have come up with ingenious methods for dealing with
the frustrating problem that the RESET key is often hit by mistake, even by
experienced typists. These solutions range from prying off the key-top to
pasting cardboard over the key to buying or constructing plastic shields to
put over the key. The newer model Apples also have a switch that
disables the RESET key and forces the user to type CTRL -RESET in order to
obtain the original RESET function.

Whatever solution you choose, beware that pressing RESET while using
Logo will cause you to lose all your work and necessitate reloading the
system following the procedure given in section 1.3.

1.3. Loading and Starting Logo
The method for starting Logo differs , depending on whether the Apple

computer you are using has " Autostart ROM" (for example, as is standard
on the Apple II Plus) or does not (for example, an unmodified Apple II).

1.3.1. On Apples with Autostart ROM

• With the computer turned off, load the Logo diskette into the
disk drive and turn the power on.

• A "] " character should appear, followed by the message

Loading, please wait ...

After about 30 seconds, Logo should start and a welcome
message:

6 Logo for the Apple II: Technical Manual

The Terrapin Logo Language
(C) 1981 MIT
(C) 1982 Terrapin, Inc.
Welcome to Logo

should appear on the screen, followed by a line beginning
with a question mark indicating that Logo is ready to accept
commands.

• Remove the Logo disk from the drive and put it in a safe place.

1.3.2. On Apples without Autostart ROM

• Place the Logo Language diskette in the disk drive and turn
on the power.

• Type 6 CTRL·P and press return.

1.4. Bugs in the Logo System
Logo is, to our knowledge, the most complex and extensive program

written for the Apple II, and Version 1.1 still contains a few very obscure
bugs that may cause the system to crash. The clearest symptom of a bug
is when the computer stops executing Logo and instead returns to the
Apple monitor with the message

CONGRATULATIONS! YOU FOUND A BUG!
TYPE 300.311 <RETURN> AND WRITE DOWN
THE RESULT. THEN TYPE CTRL-Y <RETURN>.

If you wish to report the bug, write down the indicated information
together with what you were doing in Logo at the time.

In most cases, operation of the Logo system can be successfully
continued by using the Apple monitor to restart Logo: type CTRL·Y and
RETURN.2 But even if this works, you should not assume that all is well.

2This monitor command restarts Logo at the "warm boot" address . See the addresses
listed with .BPT on page 40.

Preparing to Use Logo 7

The safest thing to do is to immediately attempt to save your workspace in
some temporary file; then reload Logo from disk and read your
procedures back in. For very serious bugs, the CTRL-Y method may not
work, in which case, the only safe recourse is to restart Logo using the
procedure given in 1.3.

Use of the Logo System 9

Chapter 2
Use of the Logo System

The Logo system includes a full interpreter for the Logo language, a
complete text editor for editing procedure definitions, and an integrated
"turtle graphics" system. This chapter provides notes on how these
different functions interact.

2.1. Modes of Using the Screen
The Logo system uses the display screen in three different ways, or

"modes."

2.1.1. Nodraw Mode

This is the mode in which the system starts. Logo prompts the user for
a command with a question mark, followed by a blinking square called the
"cursor." You may type in command lines, terminated with RETURN. Logo
executes the line and prints a response, if appropriate.

Whenever the cursor is visible and blinking, Logo is waiting for you to
type something, and will do nothing else untii you do.

The system includes a flexible line editor that allows you to correct any
typing errors in a command line which you have typed in DRAW or
NOD RAW mode. The available editing operations are the ones described
on page 14 corresponding to the keys: ESC, arrow keys, CTRL·A·, CTRL-0,
CTRL-E, CTRL-G, CTRL-K, CTRL-P.

2.1.2. Edit Mode

Executing the commands TO or EDIT places Logo in edit mode. For
example, if you enter Logo and type

TO POLY :SIDE :ANGLE

followed by RETURN, the system will enter the screen editor with the typed

10 Logo for the Apple II: Technical Manual

line of text on the screen. Logo indicates that it is in EDIT mode by
printing "EDIT: Ctrl-C to define, ctrl-G to abort" in reverse-color letters at
the bottom of the screen.

At this point you _can use all of the editing operations described on page
14 to create and/or edit the text for the procedure. Typing CTRL-C will exit
the editor, cause the procedure to be defined according to the text you
have typed, and enter nodraw mode. Typing CTRL-G aborts the edit. Logo
will return to nodraw mode without any procedures being defined. If you
begin editing a procedure, and decide that you don't want to change it
after all (or would like to start over), type CTRL-G. The procedure you were
editing will not be changed.

In this mode, RETURN is just another character which causes the
cursor to move to the next line. In EDIT mode, CTRL-C causes Logo to
evaluate the contents of the edit buffer just as RETURN in DRAW and
NODRA W modes causes Logo to evaluate the line just typed. See section
2.2.

To edit the most recently defined procedure, type just EDIT (or its
abbreviation, ED).1

2 .1. 3 . Draw Mode

In draw mode, you use the turtle for drawing on the screen. If you
attempt to execute any turtle command while in nodraw mode, the system
will enter draw mode before executing the command. The NODRAW
command (abbreviated ND) exits draw mode and enters nodraw mode.
Actually, there are different types of draw mode.

1 In DRAW mode. this edits the current definition of the procedure most recently defined or
PO'd . In NODRAW mode . however. typing EDIT with no inputs returns to EDIT mode with the
contents of the edit buffer intact. For example, after a READ or SAVE, everything read or
saved will be in til e edit buffer . If you had aborted the definition of a procedure with CTRL·G,
the edit buffer 's contents at the time you typed CTRL·G will still be in the edit buffer; you can
retrieve it by typing EDIT not followed by a procedure name . Typing EDIT followed by the
procedure name would edit the procedure as it was last defined . This is all very complicated,
but is entirely intuitive.

Use of the Logo System 11

Splitscreen mode is the normal way in which draw mode is used. Four
lines at the bottom of the screen are reserved for text, and the rest of the
screen shows the field in which the turtle moves. The turtle field actually
extends to the bottom of the screen and so is partially masked by the four­
line text region. In fullscreen mode the text region disappears and you
can see the entire turtle field . You can still type commands, but they will
not be visible. If the system needs to type an error message, it will first
enter splitscreen mode so that the message will be visible .

You can use the characters CTRL-F and CTRL-S to switch back and forth
between splitscreen and fullscreen mode. Pressing CTRL-F while in
splitscreen mode will enter fullscreen mode. Pressing CTRL-S will restore
splitscreen mode. It is also sometimes convenient to be able to switch
back and forth under program control. The commands SPLITSCREEN
and FULLSCREEN are provided for this purpose.

In draw mode, Logo displays just four lines of text. This is frequently an
inconvenience, since error messages are sometimes longer than four
lines. If you type CTRL-T while in graphics mode, the turtle picture will
disappear and you can use the entire screen for text, just as in nodraw
mode. The difference is that you are actually still in draw mode: turtle
commands can be executed, although you will not see the picture being
drawn. The CTRL·T command is especially useful when an error message
in DRAW mode is more than four lines long. CTRL·T is equivalent to the
TEXTSCREEN primitive. The only way to make the graphics screen visible
after using CTRL-T is to type CTRL·F to return to fullscreen mode, or CTRL-S
to go back to splitscreen mode.

TEXTSCREEN is different from NODRAW. NODRAW clears the text
screen, clears the graphics screen, and resets all the graphics parameters
(pencolor, turtle visibility, pen state, background color, and wrapping
mode).

Here is a list of control characters not related to editing functions. All
are available in draw mode and nodraw mode. Some exist in edit mode,
also, and are specially indicated.

12 Logo for the Apple II: Technical Manual

Non-editing Control Characters

CTRL-f

CTRL-G

CTRL·S

CTRL·T

CTRL-W

CTRL-Z

CTRL-SHIFT -M

CTRL-SHIFT·P

2.2. Editing

In graphics mode, gives full graphics screen.

In edit mode, exits the editor without processing the
edited text. In draw or nodraw mode, stops execution
and returns control to toplevel.

In graphics mode, gives mixed text/graphics screen.

In graphics mode, gives full text screen.

Stops program execution. Repeatedly typing CTRL-W
will cause Logo to stop after printing the next line (or
the next list element if lists are being printed). Typing
any character other than CTRL-W or CTRL-G will resume
normal processing. Try CTRL-W in conjunction with
the repeat key to obtain "slow motion" effects. See
TRACE (page 39).

Causes Logo to pause. You may type anything and
Logo will execute it as if it were a line of the current
procedure. Type CO or CONTINUE to continue.

Restores output to the screen . See OUTDEV, page 36.

This generates an underscore character. It is a
regular printing character, available all three modes.

The Logo system contains a fully-integrated screen editor, and a
compatible line editor. The screen editor is used for defining Logo
procedures in EDIT mode, and the line editor is used for typing Logo
commands to be executed in DRAW and NODRAW modes.

Use of the Logo System 13

2.2.1. Line Editor

While you are typing a line of characters to Logo, you can ignore the
line editor until you need it. If you mistype a character, you can rub it out
with the ESCAPE key. If you forget to put a word at the beginning of the
line, you place the cursor there with CTRL-A and type. The characters will
push the rest of the line to the right; nothing will be lost or overwritten. If
you want to insert characters anywhere in the line, simply move the cursor
there with the arrow keys, and type what you want. To go to the end of the
line, type CTRL-E. To delete the character at the cursor, use CTRL-D.

To end the line and have Logo act upon it, type RETURN. It is not
necessary for the cursor to be at the end of the line; all characters you see
on the line will be read by Logo . To delete all characters from the cursor
to the end of the line, use CTRL-K.

Lines typed to Logo may wrap around to the next screen line. The
editing commands will still work on them exactly as if the line did not
spread over more than forty characters.

Logo remembers the most recently typed line in both draw and nodraw
modes so that you can insert it into the current line by typing CTRL­
P. Unfortunately, in the current implementation, RUN, REPEAT, DEFINE,
and all filing commands , such as SAVE, cause Logo to forget the last line
typed.

2.2.2 . Screen Editor

For defining procedures, Logo has a screen editor which you enter by
typing EDIT, ED or TO, followed by the name of the procedure you wish to
define.

Once Logo is in "edit mode" the characters you type will appear on the
screen . Pressing RETURN will cause the cursor to move down to the next
line (If the cursor was not at the end of the line, it will split the current line
into two lines.) It will not cause Logo to execute the line.

Various other commands are available for editing the line on which the
cursor appears, and moving to other lines. To move to the Next line, type
CTRL-N. To move to the Previous line, type CTRL-P.

14 Logo for the Apple II: Technical Manual

Lines may be of any length, as long as they fit in the edit buffer. Lines
which are longer than 40 characters "wrap around" the screen. You can
tell they are continued lines because an exclamation point("!") is shown
in the last screen column. This mark is not a part of the procedure being
typed, and serves only as a reminder that the line does not actually end at
that point. 2

Although Logo procedures are seldom more than a few lines long, the
text you may edit is not limited to one screen page. If the text you are
typing begins to overflow the current page, the system will automatically
shift the display so that the current line is in the middle of the screen. If
you type CTRL-P or CTRL-N and move to either the top or bottom edge of
the screen, the next page will appear. The CTRL-F key inside edit mode
moves immediately to the next page of text. To move back to the previous
page, type CTRL-B. If you are on the first page, CTRL-B will move to the top
of it: similnrly, on the last page, CTRL-F will move to the end. If the text you
are editing is more than one page long, you can use the CTRL-L command
to center the current line on the screen.

To exit the editor and have the procedure you typed be defined, type
CTRL-C. To exit without having the procedure defined, type CTRL-G. After
typing CTRL-G, you can return to the editor with ED or EDIT, and have all
the text still there.3

The text you type in the editor doesn't have to be a procedure. It can be
any Logo commands which are not graphics or file-system commands.
See Section 7.1 to find out how to use Logo for editing text, saving it on
disk, and printing it.

Here is a summary of the editing commands available:

2There is a slight difference here between edit mode and draw or nodraw mode; only edit
mode displays the exclamation marks.

3Providing you didn't use graphics or filing in the meantime

Use of the Logo System 15

Keyboard Editing Commands

ESC

arrow keys

CTRL·A

CTRL-8

CTRL·C

CTRL-0

CTRL-E

CTRL·F

CTRL-G

CTRL·K

CTRL·L

CTRL-N

CTRL-0

Rubs out the character immediately to the left of the
cursor and moves the cursor one space to the left.

Moves the cursor one character to the left (or right),
without rubbing out any character.

Moves the cursor to the beginning of the current line.
CTRL-A was chosen for this command because it lies at
the beginning of a row of the keyboard, and is the first
letter in the alphabet.

When editing more than one screenful of text, moves
the cursor one screenful of text backwards, or to the
beginning of the buffer if not that much text precedes
the cursor.

Exits the editor. Processes the edited text.

Deletes the character at the current cursor position,
that is, the character over which the cursor is flashing.

Moves the cursor to the end of the current line.

When editing more than one screenful of text, moves
the cursor one screenful of text forward, or to the end
of the buffer if not that much text follows the cursor.

In edit mode, exits the editor without processing the
edited text. In all modes, stops execution and returns
control to toplevel.

Deletes all characters on the current line to the right of
the cursor. This is known as killing a line of text.

In edit mode, scrolls the text so that the line containing
the cursor is at the center of the screen.

Moves the cursor down to the next line.

Opens a new line at the cursor position. That is, CTRL-
0 is equivalent to typing RETURN and then CTRL-P. It is
most useful for adding new lines in the middle of
procedures.

16

CTRL·P

Logo for the Apple II: Technical Manual

In edit mode, moves the cursor to the previous line. In
draw or nodraw mode, retrieves previous input line so
that it can be edited and/or re-executed.4

2.3. Using Apple Peripherals

Logo's ordinary input and output operations deal with the Apple
keyboard, the screen, and one disk drive. There are also commands for
reading input from up to four game paddles that can be attached to the
Apple. (See the PADDLE and PADDLEBUTTON primitives.) In addition,
Logo provides the OUTDEV primitive for accessing output devices other
than the screen. This command takes one input that specifies a slot on
the Apple board at which a peripheral interface card should be attached.5

The OUTDEV command causes any subsequent output that would
normally go to the Apple screen to be directed at the device in the
specified slot. Unlike the BASIC PR# command, OUTDEV does not direct
typein to the alternate device . The Logo screen editor and top-level line
editor are unaffected . Using OUTDEV with an input of O will reset the
output device to screen.

Typing CTRL-SHIFT -M will redirect output to the screen . It is equivalent to
executing an OUTDEV 0, but takes effect immediately, even if Logo is in
the process of printing something to a printer.6

41n draw and nodraw mode, REPEAT, RUN, DEFINE, and all file -system commands cause
Logo to forget the previous line. Additionally , due to line-length restrictions, Logo might not
remember all of the previous line if it was very long.

51t is also possible to use OUTDEV to designate a user-supplied assembly language
routine that should be called in place of the normal character output routine . See section
6.3.1.

6But not if the Apple is "hung" waiting for the printer to receive a character . Typically,
this condition occurs when the printer is off or otherwise disabled .

Use of the Logo System 17

2.3.1. Printing Procedures on a Printer

The following examples will work if you have a printer attached to Apple
slot 1.

To obtain a paper printout of a procedure called CIRCLE, you could
type

OUTDEV 1
PRINTOUT CIRCLE
OUTDEV 0

Alternatively, you could type

HPO "CIRCLE

after you define HPO as

TO HPO :PROCEDURENAME
OUTDEV 1
RUN LIST "PRINTOUT :PROCEDURENAME
OUTDEV 0

END

HPO means "hardcopy printout." HPO "ALL will list all procedures and
names. The following procedure takes a list of procedures as an input
and prints them out on the.printer in the order they appear in the list. It's
useful for final listings of programs where you want the procedures
printed out in a certain order.

TO HPL : LIST
IF : LIST=[] STOP
HPO FIRST :LIST
HPL BF : LIST

END

Once you have defined HPO and HPL, this command line will print out
the procedures BIRD, HEAD, WINGS, TAIL, and LEGS, in that order:

HPL [BIRD HEAD WINGS TAIL LEGS]

To list all the procedures, but no names, type

HPO "PROCEDURES

18 Logo for the Apple II: Technical Manual

2.3.2. Printing Pictures

Many Apple-compatible printers support printing pictures ("screen
dumps"). Before you can print a copy of the turtle-graphics screen on
your printer, there are a few things you need to know.

Since the aspect ratio (squareness of the dots that make up the image)
of a printer is different from that of a video monitor or television, figures
that look square on the screen will come out rectangular when printed on
paper. If you are producing output especially for printing, you might want
to determine the proper aspect ratio to use with your printer. Frequently
you can compromise by setting the aspect ratio to be between that of the
monitor and that of the printer, with negligible bad effects. See the
description of the .ASPECT primitive, page 40.

Saving pictures on disk and printing them later is by far the most
common (and inexpensive) method of obtaining screen hardcopy. You
can store pictures on disk with the SAVEPICT (p. 23) command.
SAVEPICT saves the picture as an Apple DOS binary file to which ".PICT"
is appended to differentiate it from other files. The turtle-graphics screen
is stored in memory in the primary high-resolution graphics page.

Commercially available programs will load these picture files and print
them out on a wide variety of printers. The GRAPHTRIX package 7 is
commonly available in computer stores and is easy to use.

Orange Microsystems Grappler
The Grappler interface card connects the Apple II to many popular

printers. Different versions of the interface are required for different
printers; however, the following procedure will print the screen on ariy of
them, assuming the interface card is in slot 1.

TO HC ;hardcopy of graphics screen
OUTDEV 1
(PRINTl CHAR 9 "G CHAR 13)
OUTDEV 0

END

7 written by Data Transforms, 906 E. Fifth Ave., Denver CO 80216.

Use of the Logo System 19

The Grappler will print pictures with various options, including reverse
color, rotation, and magnification . The characters specifying these modes
should be placed immediately after the "G above. Refer to the Grappler
card manual for a detailed description of Grappler modes and options.

Silentype
The Silentype printer, available from Apple Computer dealers, has the

built-in capability to print pictures. Assuming that the printer is in slot 1,
the following Logo procedure will print the screen:

TO HC ;Silentype hardcopy of graphics screen.
OUTDEV 1
PRINTl CHAR 17
OUTDEV 0

END

The ascii character with code 17 is a request to the Silentype to print the
screen. You may find it more attractive to print the screen in "inverse"
mode, or to use other options. See the Silentype documentation for the
appropriate control information . Experimentation has shown the following
set of options to work well:

TO HC ;improved version for Silentype
OU1DEV 7
. DEPOSIT 53008 7
. D[POSIT 53007 128
. DEPOSIT 53012 0
PnINTl CHAR 17
. DEPOSIT 53007 0
OUTDEV 0

END

IDS Color Printer

;set printer to darkest print
;set to unidirectional printing
;set to inverse printing
;print the screen
;turn off unidirectional printing

Use the Prism Print software (Integral Data Systems order number 9100-
002-644) for printing saved pictures . There is currently no interface for
printing color pictures without leaving Logo.

20 Logo for the Apple II: Technical Manual

2.4. Color Control

If you have a color TV monitor, you can use the PENCOLOR command
(abbreviated PC) to change the color of the lines that the turtle draws.
You can also use the BACKGROUND command (abbreviated BG) to make
the turtle draw on backgrounds of various colors . Both PENCOLOR and
BACKGROUND take a number O through 6 as input. The correspondence
of colors to numbers is as follows: 8

number color
0 black

white
2 green
3 violet
4 orange
5 blue

Drawing with PENCOLOR 6 "reverses" the color of all dots that the
turtle passes over. The actual color produced depends on both the
background color and the color of the dot the turtle is passing over but in
all cases, reversing the color of a dot and then reversing it again will
restore the original color. PENCOLOR 6 is most useful with black-and­
white graphics.

If you don't explicitly give any BACKGROUND or PENCOLOR
commands , Logo will default to BACKGROUND O and PENCOLOR 1.

2.4.1. Drawing on Colored Backgrounds

When drawing on a colored background (2 through 5), only two of the
four colors ·· green, violet, blue, orange -· are available. When the
background is green or violet, blue and orange cannot be used:
PENCOLOR 4 will draw in green and PENCOLOR 5 will draw in violet.

8The actual color that appears on the screen corresponding to any of these color names
can vary greatly depending on the adjustment of the TV monitor. Also, if you have a black
and white monitor , the "colors" will appear as striped vertical lines.

Use of the Logo System 21

When the background in blue or orange, PENCOLOR 2 will draw in
orange and PENCOLOR 3 will draw in blue. Also, if you draw a picture on
the screen and then change the background color, the colors of the lines
in the picture may change, or the lines may become distorted in
unexpected ways; however, returning to the background color in which
the lines were drawn will always restore their original appearance.9

2.4.2. Drawing without Color Control

In order to obtain clear colors with the Apple computer, the Logo
system must draw lines more thickly than would otherwise be necessary.
This means that drawings will not look as precise as they could if one drew
only thin lines. If you don't care about color, you will obtain better looking
drawings by using thin lines. To do this, select BACKGROUND 6. In
BACKGROUND 6, PENCOLOR O gives black, 1 through 5 give "white,"
and 6 gives "reverse." The reason that "white" is in quotes is that "white"
lines may not always appear white on a color monitor. 10

2.5 . The Logo File System
The Logo file system allows you to save procedure definitions on floppy

disk. A user may have many files on a single disk, and the files are
distinguished by the fact that they are named. The names of the files are
listed in the disk catalog.

9These strange effects are the result of a compromise with the Apple computer color
system, which does not allow, for example, green dots to appear very close to orange dots.

101n particular, "white" vertical lines will be either red or green, depending on their
position.

22 Logo for the Apple 11: Technical Manual

2.5.1. Disk Files

When you use Logo, you should normally have a Logo file diskette
mounted in the disk drive . File diskettes may be created as described in
section 2.5 .3 below. If you want to save your procedure definitions, use
the SAVE command . For example,

SAVE "MYSTUFF

y.i'i~ save all the procedure definitions and names currently in workspace in
a file named MYSTUFF. There can be both a procedure and a file with the
same name, however SAVE saves everything in the workspace and will nQ1
save only the procedure by that name. If you already had a file of that
name, the old one will be deleted . The READ command takes a file name
as input and reads the procedures and names from that file into the
workspace. The procedures and names will be added to the ones
currently in workspace. 11

Notice that the file names given as inputs to SAVE and READ are
preceded by a quote and have no following quote.

The CATALOG command lists all the files on the disk . Logo workspace
files will be listed with the characters ".LOGO" appended to the name.
For example, the file created by

SAVE "MYSTUFF

will be listed in ·tile catalog as MYSTUFF.LOGO. Do not include the
.LOGO part of tile name when you use the READ or SAVE commands.

To remove a file from the disk, use the ERASEFILE command, which
takes as input the name of the file to be erased.

11 Logo filing makes use of the same memory area as for drawing pictures and editing
procedures. Issuing any filing command while in draw mode will first move you to nodraw
mode.

Use of the Logo System 23

2.5.2. Saving Pictures
In addition to saving procedure definitions, Logo also allows you to save

a graphics screen image on the disk, so that it can be read back in and
displayed . To do this, use SAVEPICT and READPICT.

SAVE PICT, which is similar to SAVE, takes a name as input. It saves on
the disk the picture currently on the turtle graphics screen. (SAVEPICT
should only be done when you are in graphics mode.) READPICT reads in
a picture that was saved by SAVEPICT, and displays this picture on the
screen. When you do a CATALOG you will notice that ".PICT" is
appended to picture files just as the ".LOGO" is appended to regular
Logo files. Do not include the ".PICT" part of the name when you use the
READPICT command. (However, you do need the ".PICT" if you access
the file from outside of Logo.)

To erase a picture from the disk, use the ERASEPICT command, which
takes as input the name of the picture to be erased.

You can use any of a number of commercial software packages for
printing saved picture files on printers. Logo picture files are stored in the
standard binary file format. In memory, they are located in the primary
graphics page .

2 .5.3. Configuring File Diskettes
Logo files are saved on regular floppy diskettes that have been

appropriately configured . Here are instructions for users with Applesoft
BASIC Apples to create Logo file diskettes.

1. Put the Logo Utilities disk into the Apple and switch on the
power. The Utilities disk is not the disk that you use to start
Logo. but is the one containing the demonstration and utility
programs.

2. Type

LOAD HELLO

and press RETURN and wait for the computer to stop.

3. Remove the Utilities disk from the drive and insert a new disk.

24 Logo for the Apple II: Technical Manual

Beware that this disk will be re-initialized and any previous
information on it will be destroyed.

4. Type

!NIT HELLO

Press RETURN and wait. When the computer stops (after about
a minute) the disk has been initialized and can be used for
storing Logo files.

Users of Integer BASIC Apples should use the following method for
creating file diskettes:

1. Remove the write-protect tab from the Utilities Disk and insert
it in the disk drive. Turn on your Apple. It will print
"LANGUAGE NOT AVAILABLE" and a prompt (")"). Type
the following commands:

10 PRINT "CTRL-D CATALOG"
UNLOCK HELLO
DELETE HELLO
SAVE HELLO
LOCK HELLO

2. IMPORT ANT: Remove the Utilities Diskette from the drive, and
replace its write-protect tab.

3. Place the blank diskette in the drive and proceed with step .2
of the Applesoft instructions above.

Logo System Primitives 25

Chapter 3
Logo System Primitives

Logo is a full-scale, powerful computer language. It includes
commands for graphics, arithmetic operations and list processing. It also
incorporates a real-time screen editor that can be used both for editing
command lines as they are typed and for editing procedure definitions.

3.1. Graphics Commands

BACK Moves the turtle in the opposite direction from which it
is pointing by the amount specified. Abbreviated: BK.

BACKGROUND Takes a number O through 6 as input and sets the
color of the graphics screen background as described
in section 2.4. Abbreviated: BG.

CLEARSCREEN Clears the graphics screen. Does not change the
turtle's position, the pen state, or the turtle being
hidden or shown. Abbreviated: CS.

DRAW Clears the graphics screen, homes the turtle to the
center of the screen, shows the turtle, and puts the
pen down. It does not change the background or pen
color.

FORWARD Moves the turtle in the direction in which it is pointing
by the amount specified. Abbreviated: FD.

FULLSCREEN In graphics · mode, gives full graphics screen.
Complementary to SPLITSCREEN. Equivalent to
interrupt character CTRL-F.

HEADING Outputs the turtle's heading as a decimal number. The
heading ranges from O to less than 360. When the
turtle has a heading of O it is pointing straight up.

HIDETURTLE Makes the turtle pointer disappear. Abbreviated: HT.

HOME Moves the turtle to the center of the screen, pointing

26

LEFT

NODRAW

NOWRAP

PENCOLOR

PENDOWN

PENUP

RIGHT

SETHEADING

SETX

SETXY

SETY

SHOWTURTLE

Logo for the Apple II: Technical Manual

straight up.

Rotates the turtle. Takes an input that specifies the
number of degrees to rotate. Abbreviated: LT.

Exits graphics mode, giving a clear text page with the
cursor homed in the upper left-hand corner of the
screen. Abbreviated: ND.

Exits wrapping mode. Any command that would
normally cause the turtle to move off one edge of the
screen and onto the opposite edge instead results in
an error.

Takes a number from O through 6 and sets the color of
the lines that the turtle will draw as described in
section 2.4. Abbreviated: PC.

Causes the turtle to leave a trail when it moves. This is
the default state and it is changed by PENUP.
Abbreviated: PD.

Causes the turtle to move without leaving a trail.
Abbreviated: PU.

Rotates the turtle. Takes an input that specifies the
number of degrees to rotate. Abbreviated: RT.

Rotates the turtle to the direction specified. Input
determines number of degrees. Zero is straight up,
with heading increasing clockwise. Abbreviated:
SETH.

Moves the turtle horizontally to the specified
coordinate.

Takes two numeric inputs. Moves the turtle to the
specified point. 0,0 is screen center. When the y­
coordinate (second input) is negative, it must be
enclosed by parentheses.

Moves the turtle vertically to the specified coordinate.

Makes the turtle pointer appear . This is the default
state and it is changed by HIDETURTLE. Abbreviated:

Logo System Primitives 27

SPLITSCREEN

TEXTSCREEN

ST.

In graphics mode, gives mixed text/graphics screen,
which is the default state. Complementary to
FULLSCREEN. Equivalent to interrupt character CTRL·
s.
In graphics mode, gives full text screen. See
SPLITSCREEN, FULLSCREEN. Equivalent to interrupt
character CTRL-T.

TOWARDS Takes two numbers as inputs. These are interpreted
as the x and y coordinates of the point on the screen.
TOWARDS outputs the heading from the turtle to the
point. That is, SETHEADING TOWARDS :X :Y will
make the turtle face towards point x,y. Compare with
ATAN.

TURTLESTATE Takes no inputs. Outputs a list of four items giving
information about the state of the turtle . The format of
the list is as follows: The first element is TRUE or
FALSE for pen down or pen up, then TRUE or FALSE
for show or hide turtle, then background color, then
pen color. Abbreviated TS.

WRAP

XCOR

YCOR

Places the graphics system in wrapping mode. Any
time the turtle moves off the edge of the screen, it
reappears at the opposite edge. Wrap mode is the
default, and is exited only by the NOWRAP command.

Outputs the turtle's x-coordinate as a decimal number.

Outputs the turtle's y-coordinate as a decimal number.

28 Logo for the Apple II: Technical Manual

3.2. Numeric Operations

+

•
I

)

<

ATAN

cos

INTEGER

NUMBER?

QUOTIENT

RANDOM

RANDOMIZE

Addition

Subtraction (two inputs) and negation (one input).

Multiplication

Division (always outputs a decimal value).

Outputs TRUE if its first input is greater than its
second , FALSE otherwise.

Outputs TRUE if its first input is less than its second,
FALSE otherwise .

Takes two inputs and then outputs (in degrees) the
arctangent of the quotient. The output ranges from 0
to less than 360, with the quadrant corresponding to
the signs of the two inputs. If the second input is
negative, it must be enclosed by parentheses.

Outputs the cosine of its input (as an angle in
degrees).

Takes one numeric input and outputs the integer part,
ignoring the -fractional part.

Outputs TRUE if its input is a number . See also
WORD? and LIST?.

Outputs the integer quotient of its two inputs. (If the
inputs are not integers, it first rounds them to the
nearest integer .) If the second input is negative, it
must be enclosed by parentheses.

Takes one input -- a positive integer n -- and outputs
an integer between O and n-1. Identical sequences of
calls to RANDOM will yield repeatable sequences of
random numbers each time Logo is restarted unless
the seed for the random number generator is
RANDOMIZEd.

Randomizes the seed for RANDOM. If given an
explicit input , sets the random number seed to that

Logo System Primitives 29

REMAINDER

ROUND

SIN

SQRT

number. For example , after each execution of
(RANDOM1ZE 259) the same sequence of random
numbers will be generated. Different numbers result in
different sequences. Note that () are needed around
RANDOMIZE if an input is used, such as (RANDOMIZE
259) above.

Outputs the integer remainder of its first input divided
by its second. (If the inputs are not integers, it first
rounds them to the nearest integer.) If the second
input is negative, it must be enclosed by parentheses.

Outputs the nearest integer to its input.

Outputs the sine of its input (as an angle in degrees).

Takes a positive number as input and outputs the
square root of that number.

3.3. Word and List Operations

=

BUTFIRST

BUTLAST

If both inputs are numbers, compares them to see if
they are numerically equal. If both inputs are words,
compares them to see if they are identical character
strings. (In this case, a space is needed before the =
sign .) If both inputs are lists, compares them to see if
their corresponding elements are equal. Outputs
TRUE or FALSE accordingly.

If the input is a list, outputs a list containing all but the
first element. If the input is a word, outputs a word
containing all but the first character. Abbreviation: BF.
Gives an error when called with the empty word or the
empty list.

If input is a list, outputs a list containing all but the last
element. If input is a word, outputs a word containing
all but the last character. Abbreviation: BL. Gives an
error when called with the empty word or the empty

30

FIRST

FPUT

LAST

LIST

LIST?

LPUT

SENTENCE

Logo for the Apple !I: Technical Manual

list.

If input is a list, outputs the first element. If input is a
word, outputs the first character. Gives an error when
called with the empty word or the empty list.

Takes two inputs. Second input must be a list.
Outputs a list consisting of the first input followed by
the elements of the second input. Therefore, if the first
input is a list, for example FPUT [A B][C D], the result
will be [[A B]C D]. See also · LPUT, LIST, and
SENTENCE.

If input is a list outputs the last element. If input is a
word, outputs the last character. Gives an error when
called with the empty word or the empty list.

Takes a variable number of inputs (two by default) and
outputs a list of the inputs. Therefore, if the first and
second inputs are lists, for example LIST [A B] [C D],
the result will be [(A B][C D]]. See also FPUT, LPUT,
and SENTENCE. If there are more than two inputs,
there must be an opening parenthesis before LIST,
and a space and closing parenthesis after the last
input.

Outputs TRUE if its input is a list. See also WORD?
and NUMBER?.

Takes two inputs. Second input must be a list.
Outputs a list consisting of the elements of the se~ond
input followed by the first input. Therefore, if the first
input is a list, for example LPUT [A B] [C D], the result
will be [C D[A B]]. See also FPUT, LIST, and
SENTENCE.

Variable number of inputs (default 2). If inputs are all
lists, combines all their elements into a single list. If
any inputs are words (or numbers), they are regarded
as one-word lists in performing this operation.
Therefore, .if the first and second inputs are lists, for

Logo System Primitives 31

WORD

WORD?

example SENTENCE [A B] [C D], the result will be [A B
C D]. If there are more than two inputs, there must be
an opening parenthesis before SENTENCE, and a
space and closing parenthesis after the last input. See
also FPUT, LPUT, and LIST. Abbreviated: SE.

Variable number of inputs (default is 2). Outputs a
word that is the concatenation of the characters of its
inputs (which must be words). If there are more than
two inputs, there must be an opening parenthesis
before WORD, and a space and closing parenthesis
after the last input.

Outputs TRUE if its input is a word. Since numbers are
treated as words, the result will also be TRUE for a
number. See also LIST? and NUMBER?.

3.4. Defining and Editing Procedures

DEFINE

EDIT

Takes two inputs. First is a name, second is a list.
Each element of this list must be a list itself. The first
element of the list is a list of inputs to the procedure.
(If there are no inputs to the procedure, the first
element should be the empty list.) Each subsequent
element is a list corresponding to one line of the
procedure being defined. For example, DEFINE
"TRIANGLE [[:SIZE][REPEAT 3[FD :SIZE RT 120))].
See TEXT. Note that one normally uses TO rather than
DEFINE in order to define procedures.

Enters edit mode. If a proc·edure name is included as
an input, that procedure will be in the editor. If no
input is specified, enters edit mode with the previous
contents of the screen editor buffer, or the most
recently defined (or PO'd) procedure if the previous
contents are unretrievable. Can also take auxiliary
words: ALL, NAMES, PROCEDURES. See page 12 for

32

END

ERASE

ERNAME

TEXT

Logo for the Apple II: Technical Manual

a description of keystroke commands inside the editor.
Abbreviated: ED.

Terminates a procedure definition that is typed in to
the editor. It is not necessary to type END at the end of
the final definition. But if you are defining more than
one procedure at a time, the separate procedure
definitions must be separated by END statements.

Erases designated procedure from workspace . Can
also take qualifiers ALL, NAMES, PROCEDURES.
Signals an error if there is no procedure with the given
name. For convenience, the input to erase is not
evaluated (i.e. Logo will not try and run the procedure
being erased.); to erase a procedure called LOOKUP,
type ERASE LOOKUP. Abbreviated: ER. To erase a
list of procedures, the following procedure can be
used.

TO ERPROCS :PROCLIST
IF :PROCLIST = [] STOP
RUN LIST "ERASE FIRST :PROCLIST
ERPROCS BUTFIRST :PROCLIST

END

Takes a name as input and removes that name from
the library. Signals an error if the name is not used.
Note that unlike ERASE, the input to ERNAME is
evaluated. Thus, to erase the name TEMP, type
ERNAME "TEMP. If ERNAME TEMP is typed, TEMP is
assumed to be a procedure and Logo tries to run it.

Takes a procedure name as input and outputs
procedure text as a list. The procedure name must
start with " or Logo will run the procedure. If the
procedure has not been defined, TEXT outputs []. If
instead the input is the name of a Logo primitive, it
outputs the primitive's name (i.e., the input). See
DEFINE.

Logo System Primitives 33

TO

3.5. Naming

MAKE

THING

THING?

Begins procedure definition. Takes a variable number
of inputs. Enters edit mode with the procedure named
by the first input. Any following inputs are taken as
inputs to the procedure named by the first input. With
no inputs at all, TO enters edit mode with an empty edit
buffer.

Takes two inputs, the first of which must be a word. It
treats the word as a variable, and makes the second
input be the value (thing) of the variable.

Outputs the value of its input, which must be a word.
Note that this gives an "extra level" of evaluation.
THING "XXX is equivalent to :XXX.

Outputs TRUE if its input has a value associated to it.

3.6 . Conditionals

ALLOF

ANYOF

ELSE

IF

Takes a variable number. of inputs (default is two) and
outputs TRUE if all are TRUE. If there are more than
two inputs, there must be an opening parenthesis
before ALLOF, and a space and a closing parenthesis
after the last input.

Takes a variable number of inputs (default is two) and
outputs TRUE if at least one is TRUE. If there are more
than two inputs. there must be an opening parenthesis
before ANYOF, and a space and a closing parenthesis
after the last input.

Used in IF ... THEN ... ELSE.

Used in the basic conditional form IF <condition>
THEN <action1 > ELSE <action2>. The <condition> is
tested: If it is true <action1> is performed. If it is false

34

IFFALSE

IFTRUE

NOT

TEST

THEN

3. 7. Control

GO

GOODBYE

OUTPUT

Logo for the Apple II: Technical Manual

<action2> is performed. The word THEN is optional.
The ELSE <action2> part need not be present. The
<condition> must be a Logo expression which outputs
"TRUE or "FALSE. A Logo variable whose value is
"TRUE or "FALSE satisfies this condition, as do
various testing functions such as <, >, = , and NOT.
Both <action1> and <action2> may be any number of
Logo expressions.

Executes rest of line only if result of preceding TEST
was false. Abbreviated: IFF

Executes rest of line only if result of preceding TEST
was true. Abbreviated: IFT

Outputs TRUE if its input is FALSE, FALSE if its input
is TRUE.

Tests a condition to be used in conjunction with
IFTRUE and IFFALSE. TEST takes one input, which
must be either TRUE or FALSE. The result of the most
recent TEST in each procedure is used by IFTRUE and
IFFALSE, and is local to the current procedure.

Used with IF· ... THEN ... ELSE ...

Takes a word as input and transfers to the line with
that label. You can only GO to a label within the same
procedure. Labels are defined by typing them at the
beginning of the indicated line· followed by a colon.
(GO is very rarely used in Logo programming.)

Clears workspace and restarts Logo. 1

Takes an input. Causes the current procedure to stop

1 But it does not clear the user machine.language area.

Logo System Primitives 35

REPEAT

RUN

STOP

TOPLEVEL

and output the input to the calling procedure. If the
input has to be evaluated, it outputs the result of that
evaluation. Abbreviated: OP.

Takes a number and a list as input. RUNs the list the
designated number of times.

Takes a list as input. Executes the list as if it were a
typed in command line . Note: the number of
characters in the list (i.e., the number of characters
you would get if you printed it) given to RUN must not
exceed the maximum number of characters allowed in
the top-level command line, 255. Otherwise, an error
is signalled. (ERASE and PO must be treated
differently than other commands when they follow
RUN. For an example, see the listing for ERASE and
PO.)

Causes the current procedure to stop and return
control to the calling procedure. 2

Aborts the current procedure and all calling
procedures and returns control to toplevel. 3 It is not
used very often in Logo programming.

2sTOP does not mean the same thing as END. STOP is a primitive which when executed
causes the current procedure to stop executing, and returns control to the previous
procedure (or toplevel) . END 1s used in the editor to indicate where a procedure ends. It is
never executed.

3Note the difference between TOPLEVEL and STOP. STOP stops just the current
procedure and continues execution with the calling procedure, whereas TOPLEVEL aborts
execution of the whole program.

36 Logo for the Apple II: Technical Manual

3.8. Input and Output

OUTDEV Takes as input a number designating a slot on the
Apple card. After executing this command, everything
except typein will be sent to the device plugged in to
the designated slot rather than to the screen.
OUTDEV O specifies output to the screen. A "slot
number" number greater than 255 is interpreted as the
address of a user-supplied assembly language routine
to be called in place of the usual character output
primitive. See section 6.3.1. Typing CTRL-SHIFT -M will
restore output to the screen.

ASCII Takes a character as input and outputs the number
that is the ASCII code of that character.

CHAR Takes an integer as input and outputs the character
whose ASCII code is that integer.

CLEARTEXT Clears the text screen and homes the cursor.

CLEARINPUT Clears the character input buffer of any typed-ahead
characters.

CURSOR Takes two inputs, column and row, and positions the
cursor there. Columns are 0-39, rows are 0-23. 0,0 is
upper left. See the CH and CV locations (page 74) to
find out how to determine the cursor's current
position.

PADDLE Takes a number O through 3 as input, which spe~ifies
the paddle. Outputs a number 0-255 depending on the
setting of the appropriate paddle dial. One example
that can be used with either two paddles or a joystick
is SETXY PADDLE O PADDLE 1.

PADDLEBUTTON Take a number O through 2 as input and outputs TRUE
or FALSE depending on whether the button on the
corresponding paddle is pressed. One example of its
use is IF PADDLEBUTTON O = "TRUE THEN
CLEARSC8EEN. On the Apple II, paddle 3 does not

Logo System Primitives 37

PRINT

PRINT1

have an associated paddle button.

Variable number of inputs (default is 1). Prints the
input on the screen. Lists are printed in "sentence"
form, without the outermost level of brackets. The
next PRINT will print on the next line of the screen. If
there are multiple inputs, as in (PRINT 1 2 3), the
inputs will be printed on one line, separated by spaces.
Note that for multiple inputs, the entire statement must
be enclosed in parentheses. If the input to PRINT is a
procedure, it will not print the procedure, but will
execute the procedure assuming the procedure will
output something to print. (See also PRINTOUT)
Abbreviated: PR.

Like PRINT, but does not terminate output line with a
return . With multiple inputs, does not print spaces
between elements.

RC? Outputs TRUE if a keyboard character is pending (i.e.,
if READCHARACTER would output immediately,
without waiting for the user to press a key), otherwise
outputs FALSE.

READCHARACTER

REQUEST

Outputs the least recent character in the character
buffer , or if empty. waits for an input character. See
CLEAR INPUT, and section 7.4. See the explanation of
the INST ANT program on the utilities disk for an
example of its use. Abbreviated RC.

Waits for an input line to be typed by the user and
terminated with RETURN. Outputs the line (as a list).
Abbreviated: RO.

38 Logo for the Apple II: Technical Manual

3.9. Filing and Managing Workspace

CATALOG

DOS

ERASEFILE

ERASEPICT

PRINTOUT

Prints the names of files on the currently mounted
disk.

Takes one input (word or list), and interprets it as
commands to DOS. DOS [RENAME GMAE.LOGO,
GAME.LOGO] will rename something saved with SAVE
"GMAE. To "unlock" locked files (those which appear
with an asterisk in the CATALOG listing) type, for
example, DOS (UNLOCK ADDRESSES.LOGO]. The
following DOS commands are available in this manner:
DELETE. VERIFY, CATALOG, LOCK, UNLOCK, MON,
NOMON, RENAME, BLOAD, BRUN, BSAVE. See the
Apple DOS manual for information on the syntax of
DOS commands. WARNING: This command is likely to
be removed and replaced with individual primitives.

Removes from the disk a file saved with SAVE. Takes
file name as input, which must begin with a II mark.

Removes a picture that has been stored on the disk
using SAVEf?ICT. Takes picture name as input, which
must begin with a II mark.

If given a procedure name as input, prints out the text
of the procedure . If given no input, prints out the last
procedure defined, edited or printed out. For
convenience, the input is not evaluated; thus to see a
procedure called CIRCLE, you would type PO CIRCLE
and not PO "CIRCLE. Can also take auxiliary words:
ALL, NAMES, PROCEDURES. To print out a list of
procedures, the following procedure can be used.

TO POPROCS :PROCLIST
IF :PROCLIST =[]STOP
RUN LIST "PO FIRST :PROCLIST
POPROCS BUTFIRST :PROCLIST

END

Logo System Primitives 39

READ

READPICT

SAVE

SAVEPICT

Abbreviated: PO. POTS is an abbreviation for
PRINTOUT TITLES. (See also PRINT.)

Reads a file from disk. Destroys any graphics display.
Takes file name as input, which must begin with a "
mark.

Reads a picture that has been stored on disk and
displays it on the graphics screen. Takes picture
name as input, which must begin with a " mark.

Saves the contents of the workspace on disk. See the
Filing comments . Destroys any graphics display.
Takes file name as input, which must begin with a "
mark.

Save on disk the picture on the screen. Takes picture
name as input, which must begin with a " mark.

3.10. Debugging

CONTINUE

PAUSE

NOTRACE

TRACE

Resumes execution after a PAUSE or CTRL-Z.

Abbreviated: CO.

Stops execution and allows command lines to be
evaluated in the current local environment. Equivalent
to interrupt character CTRL -Z. Execution is resumed
with CONTINUE, provided no errors have occurred.

Turns off tracing.

Takes no input. Causes Logo to pause before
executing each procedure, and print the name of the
procedure and its inputs . Typing any character other
than CTRL-G or CTRL-Z will cause Logo to go on to the
next line. Typing CTRL-G will cause Logo to abort to
toplevel. CTRL-Z will pause, and space will continue
execution. See CTRL-W, page 12.

40 Logo for the Apple II: Technical Manual

3.11. Miscellaneous Commands

.ASPECT

.BPT

.CALL

Changes the vertical scale at which Logo graphics are
drawn. Takes one numeric input and uses this to
change the scale factor. The default value for the
factor is 0.8. This command is included because not
all TV monitors have the same amount of vertical
deflection. Consequently, turtle programs that are
supposed to draw squares and circles may instead
appear to draw rectangles and ellipses . If so, the
.ASPECT command can be used to attempt to
compensate for the distortion. Note that changing the
factor will change the limits for permissible Y·
coordinates. 4

Breaks out of Logo into the Apple monitor. (For use in
Logo system debugging only.) Useful entry addresses
are 1 BF9, which is a " cold start" address to use after
Logo has been started before; and the "warm start"
address 1 BFC, for attempting to recover after a system
crash. After restarting Logo at the cold start address,
all procedures are lost : it is just like typing GOODBYE.
The warm start address leaves all variables and
procedures intact. 5 The best way to return to Logo is
to type CTRL·Y and RETURN;

Calls a machine language subroutine in memory. The
address of the subroutine is the first input; the second
input is stored in a memory location for the routine to
examine. This primitive allows users to provide their
own special-purpose primitives and interface them to

4There is a problem with using values of .ASPECT that are too different from 0.8: Although
lines will be drawn at the correct angle, the turtle pointer may not always appear to be
pointing exactly along the line.

51n fact, all local variables still have the values they had at the time Logo was interrupted .

Logo System Primitives 41

.CONTENTS

.DEPOSIT

.EXAMINE

. GCOLL

.NODES

Logo. See section 6.2.

Returns a list of all words known to Logo. This
includes names of variables, procedures, and words
used in procedures. One use might be an editing
program that, for each procedure defined , asks you
whether you want to delete it. TEXT and THING? are
useful primitives to use with the elements of this list.
Caution: Use of this primitive interferes with garbage
collection of "truly worthless atoms". 6 These are the
no-longer -used words that Logo has in memory,
usually as the result of typing errors. If you run short
of memory, it might be because an old list from
.CONTENTS is around somewhere keeping Logo from
recovering the storage associated with no-longer­
needed words .

Takes two numeric inputs, an address and a value,
and deposits a byte of data ·at a designated memory
location. See section 6.1.

Takes one input. Outputs the value of the byte at the
specified address. See section 6.1 .

Forces a garbage collection.

Outputs the number of currently free nodes. To obtain
a true count of free memory, type .GCOLL before
typing .NODES.

Causes the rest of the line not to be evaluated. Useful
for including comments in procedures and procedure
titles .

6 Actually , no version of Logo for any microcomput~r yet implements GCTWA, so the
storage is never recovered. Terrapin , however, is working on implementing this feature .

..

The Utilities Disk

Chapter 4
The Utilities Disk

43

The Utilities Disk is the diskette containing demonstration and utility
programs from MIT and Terrapin. One Utilities Disk is included with each
Logo package.

This chapter lists the files on the Utilities Disk, and briefly describes how
to run the demonstration programs included. Further explanation and
examples are in the Tutorial.

Using the Utilities Disk
Start Logo as described in section 1.3. and in the Tutorial. You should

see the ? prompt with the cursor flashing next to it.

Insert the Utilities disk into the drive, and type CATALOG, followed by
return. This will give you the first part of a listing of the programs on the
disk. You must press the space bar to see the remainder. If you type
CATALOG while Logo turtle graphics are on the screen, you will see only
four lines of text at a time. You can type CTRL-T to see the full text screen,
and CTRL-S to return to the graphics screen.

To read a program from the disk, type READ .'.'.. immediately followed by
the name of the program. Do not use a closing quotation mark, and do not
type" .LOGO" at the end of the name.

Logo will then print out the name of each procedure in the file as it is
read in and defined. When it is finished, the? prompt will reappear.

Some programs are self-starting; that is, they begin executing by
themselves once you read the tile. Most programs are not, and require
you to type the name of the initial procedure.· The initial procedure for
most of the demonstration programs on the Utilities disk is the same as the
name of t11e file. For utility programs which are intended to be initialized
and used later, the procedure is usually called "SETUP".

If Logo prints the ? prompt when it finishes reading the file, you must
start the program yourself . The descriptions of the programs below
explain how to start each one.

44 Logo for the Apple II: Technical Manual

Here is a sample session showing how to use a demonstration program.
What you should type is shown tn plain type, and what Logo prints is
shown in italics .

?READ "ROCKET
SH DEFINED
GLOW DEFINED
TRAVEL DEFINED
CIRC DEFINED
STARS DEFINED
SHOW DEFINED
ROCKET DEFINED
?ROCKET

4.1. Program Descriptions
These Logo files are for various utility programs written in Logo by MIT

and Terrapin. They contain information used by other files on the Utilities
Disk.

ASSEMBLER

AMODES

ADDRESSES

OPCODES

SHAPE.EDIT

FID

The Logo assembler procedures . See chapter 6.

The file of names describing the 6502 addressing
modes.

The file of names describing addresses in the Logo
interpreter for the assembler .

The file of names describing the 6502 mnemonics for
the assembler.

The Logo shape editor, described in section 5.

A file utility program . It makes deleting and renaming
files convenient. It starts itself when you read it in. To
restart it, type FID.

These files are utility programs provided by Terrapin and MIT.

The Utilities Disk 45

PSAVE
The Logo SAVE primitive saves all procedures and names currently

defined . Sometimes this behavior is inconvenient. The PSAVE procedure
allows you to save an arbitrary list of procedures in a file. The first input to
PSAVE is the filename, and the second is the list of procedures to save.
As one of tile procedure names, you can use the word NAMES to indicate
that Logo variables should be saved. (See also the HPL procedure on
page 17 which prints out a list of procedures to a printer.)

To load PSAVE, type

READ "PSAVE

To save procedures named CIRCLE, SQUARE, and TRIANGLE in the
file DESIGN, type

PSAVE "DESIGN [CIRCLE SQUARE TRIANGLE]

TEACH
The Logo editor allows tremendous flexibility in defining procedures

and editing . but at the cost of being complex to new users. The TEACH
procedure allows the user to define procedures without entering the
editor. It has the additional advantages of prompting the user for
information and not clearing the turtle-graphics screen.

To use the TEACH procedure, type

READ "TEACH

Type TEACH to teach Logo a new word and END to stop it. Here is an
example, with the parts that Logo prints out in italics:

?TEACH
NAME OF PROCEDURE>COUNT
INPUTS (IF ANY)?:N
<IF :N = 0 STOP
<PRINT :N
<COUNT :N - 1
<END
COUNT DEFINED
?

46 Logo for the Apple II: Technical Manual

CURSOR
These procedures are for controlling character output. The CURSOR

primitive is the only one provided for controlling the location of the text
cursor on the screen. The following procedures are for performing
operations not directly supported in Logo:

CURSOR.HY

CURSOR.H

CURSOR.V

CURSORPOS

FLASHING

INVERSE

NORMAL

Outputs a list. The first element is the cursor's
horizontal position, and second, its vertical position.

Outputs just the horizontal position.

Outputs the vertical position.

Takes one input (a list) and sets the cursor to the
corresponding position on the screen.

Causes all characters printed out after execution of
this command to be in flashing characters.

Makes characters be in inverse video (black-on-white).

Restores the normal mode of white-on-black.

These procedures do not affect characters already on the screen, only
those printed out afterwards. You can start a blank text file by typing TO
followed by RETURN. Then type whatever text you want. When you are
done. type CTRL-G and then save the file using SAVETEXT. To read a file
back in, use READTEXT and then type ED followed by RETURN. If you type
TO it will clear the edit buffer and you will have to use READTEXT again.

TEXTEDIT
Procedur es for using the Logo editor as a text editor. These

procedures allow you to use the Logo editor to read and save files of
English text.

SAVETEXT :FILE Cau·ses the contents of the editor to be stored on disk
in the Logo file with the specified name. Example:

SAVETEXT "LETTER
READTEXT :FILE Complementary to SAVETEXT. Reads a Logo file into

the editor.

The Utilities Disk 47

SHOWFILE :FILE Prints the contents of the file on the screen.

PRINTFILE :FILE Prints the contents of the file on the printer. The
printer is assumed to be in the slot specified by the
variable PRINTER. If you don't set it yourself (by
typing MAKE "PRINTER 7, for example) it will remain
slot 1.

PRINTTEXT Prints the contents of the editor on the printer.

DPRINT
This file contains procedures for printing arbitrary text into disk files.

These procedures are described in section 7.3.

OPEN :FILE

CLOSE

Takes a file name as input. The input to DPRINT (see
below) will be printed into the Logo file with this name.

Closes the open file. All output will be written to the
file.

DPRINT :ITEM Will cause the item to be printed into the file.

OPEN.FOR.APPEND :FILE
Used in.stead of OPEN. Will cause everything printed
with DPRINT to be appended to the existing file rather
than writing over it.

The files created by these procedures can be printed and read into the
editor by the procedures in the file TEXTEDIT. If you use READ on such a
file, Logo will attempt to execute the text in the file as Logo commands.

ARCS
This file has procedures for drawing arcs and circles of specific radii.

For your convenience, the procedures for drawing arcs of specific radii
are reproduced in this file.

RARC :RADIUS :DEGREES, LARC :RADIUS :DEGREES
These procedures each take two inputs and draw an
arc of the specified radius and covering the number of

48 Logo for the Apple II: Technical Manual

degrees indicated.

RCIRCLE :RADIUS, LCIRCLE :RADIUS
These procedures each take one input, the radius, and
draw a circle of that radius.

These procedures are also discussed in the book Logo for the~!!,

TCL
Turtle Control Language.

This file is for owners of the Terrapin Turtle (TM). It contains the
following procedures for using the Turtle:

SETUP

HELP

Type SETUP after loading the file. It initializes the
Turtle Interface and various system parameters.

This procedure describes the procedures available for
using the Turtle.

TFD :DIST, TBK :DIST, TL T :ANGLE, TAT :ANGLE
These procedures correspond to FORWARD, BACK,
LEFT, and RIGHT, but control the floor turtle instead of
the screen turtle.

EYESON, EYESOFF

HORNLO

HORNHI

HORNOFF

TPU

TPD

FTOUCH?

LTOUCH?

These procedures turn off and on the LEDs attached
to the Turtl~.

Makes the Turtle sound its horn at a low pitch.

Similar, but with a higher pitch.

Turns the horn off.

Raises the Turtle's pen so it won't draw. This is its
initial state.

Lowers the pen.

Outputs TRUE if the Turtle's dome is touching
anything on the front; otherwise it outputs FALSE.

Left touch . RTOUCH?

The Utilities Disk

FTOUCHONL Y?

ANYTOUCH?

NOTOUCH?

TOUCH

Right touch. STOUCH?
Back touch.

49

Whereas FTOUCH? will output TRUE if the Turtle is
touching something in front, or in front and on the left,
or in front and on the right, FTOUCHONL Y? will output
TRUE if the Turtle is touching something only in front.
Use this procedure as a model for similar procedures
for other directions.

Outputs TRUE if the Turtle is touching anything.

Outputs TRUE if the Turtle is touching nothing.

Outputs the state of the touch sensors as a number.
This routine is used internally in the above touch­
testing routines. The Logo variables :FBIT, :LBIT,
:BBIT, and :RBIT are names for the numbers this
number is composed of. (See the Terrapin · Apple
Interface manual for clarification.)

.TCMD :COMMAND :ARGUMENT
.TCMD is the lowest-level procedure for controlling the
Turtle. It sends the command and argument to the
Turtle. You can use it to make the Turtle do things that
the above procedures don't support. See the Terrapin
- Apple Interface manual for the details of controlling
the Turtle via this command.

4.1.1. Demonstration Programs

These files are various Logo demonstration programs.

Rocket
The Logo files ROCKET, ROCKET.AUX and the file ROCKET.SHAPES

are an illustration of a typical use of user-defined turtle shapes. READ
"ROCKET and type ROCKET. See page 56 for a description of the shape
editor.

50 Logo for the Apple II: Technical Manual

Animal
This program attempts to augment its knowledge about the animal

kingdom by playing a game in which it tries to guess the animal you are
thinking of. It asks various questions, such as "Does it have wings?" You
answer with "Yes" or "No."

Type READ "ANIMAL and ANIMAL. When you are finished playing, you
can type SAVE "ANIMAL, and the next time you play, it will know the
animals you taught it. The animal game on the Utilities Disk already knows
several animals. To make it start out fresh, run the procedure
INITIALIZE.KNOWLEDGE.

Animal.Inspector
The procedures in this file are for examining the ANIMAL knowledge

base. The ANIMAL game described in the book Logo for the ~ .!!
keeps its information about animals in the variable KNOWLEDGE. This file
contains the procedure INSPECT.KNOWLEDGE, which prints out the
ANIMAL program's "knowledge" about animals in an easily readable
form. This procedure is intended as a learning aid to be used with the
discussion of the ANIMAL program mentioned above.

In its use of recursion , it is similar to tree-drawing programs, since it
actually follows the tree of the Animal program's knowledge as it prints it
out . Look at the procedures in this file as an example of recursive
programming.

Instant
This collection of procedures makes the Logo system easy to use even

for very young children . After you READ "INSTANT and type INSTANT,
you can use single-character commands to manipulate the turtle and
define procedures. Each character is acted upon immediately. Typing F,
for example. makes the turtle move forward a small amount, leaving a trail.
R makes it turn to the right. Repeating a sequence of F's and R's will draw
a square.

The INSTANT system ailows you to store the commands you have typed
as a procedure . When you type N, it will define a procedure to draw the
picture currently on the screen. If you draw a square using R and F, and

The Utilities Disk 51

name the result SQUARE (using the N command), the INST ANT system
will define a procedure SQUARE with calls to FORWARD and RIGHT in it.
Typing P to INST ANT will have it ask you the name of a procedure to run
(picture to show), and run that procedure. Here is a table of INSTANT
commands:

? Help.

D Clears the screen.

F Go forward.

L Turn left.

N Names a new picture.

p Asks for the name of a picture to show.

R Turn right

u Undo the last command.

The INST ANT program is an example of how easy it is to create
"languages" with simple Logo programs. It also serves as an example of
Logo programming style, and of the use of RUN and DEFINE. You can
easily modify INST ANT to provide more complex commands.

Dynatrack
The DYNATRACK program implements something called a "dynamic

turtle'' -- one which moves around with time. This particular program
simulates a ride around a frictionless racetrack. Type DYNATRACK to
start. K rnuses the turtle to accelerate in the direction it was pointing. L
and R turn the turtle to the left and to the right.

FID
FID is a file utility program written in Logo. It allows you to catalog the

disk, rename files, and delete files, all with single-keystroke commands.
Each file command asks for the name of a file, and appends to it the
current "file extension." The"." command in FID allows you to change
the file extension. Useful file extensions for Logo are "LOGO," "PICT,"
"SHAPES," and "BIN." In.the evant of a disk-file error, restart the program

52 Logo for the Apple II: Technical Manual

by running the procedure FID.

Music
There are three music files: MUSIC.LOGO, containing Logo procedures

to play music; MUSIC.SAC.LOGO, containing the assembly language
program for playing notes; and MUSIC.BIN, the file which the music demo
procedures BLOAD. To run the music programs, READ "MUSIC and type
SETUP. For a short demonstration, run the FRERE procedure. See page
72 for documentation of the music system. The Tutorial also has an
explanation and examples of its use.

lnspi
The picture file INSPI was generated by running the following

procedure four times with the turtle pointing at different angles, and with
different pen colors:

TO INSPI :DISTANCE :ANGLE : INCREMENT
FD :DISTANCE
RT :ANGLE
INSPI :DISTANCE :ANGLE+ :INCREMENT :INCREMENT

END

You can display the picture by typing READPICT "INSPI.

TET
The procedures in this file are an example of how simple Logo

programs using recursion can draw complex, interesting figures. The TET
procedure takes two inputs, SIZE and LEVELS. Try TET 100 1 to see what
the first "level" of the drawing looks like. Then try it with 2, 3, and higher
levels.

Changing the Turtle Shape

Chapter 5
Changing the Turtle Shape

53

As an example of the kind of facility that can be added to Logo through
judicious use of .EXAMINE and .DEPOSIT, we consider the problem of
doing "animation" in Logo. Logo for the Apple II is not designed for
producing animation effects. 1 The best screen motion that you can obtain
is by moving the turtle. If you want to make a circle move across the
screen, it will be very slow to repeatedly draw and erase the circle, moving
the position of the circle little by little. One thing you can do, however, is
to change the shape of the turtle itself, so that the turtle looks like a circle.
Then you can make a circle move across the screen by simply moving the
turtle.

The Logo turtle is drawn using the Apple "shape" mechanism, that
allows specification of shapes by tables of two- and three-bit vectors as
described in the Applesoft Programming Reference Manual. You can
design your own shapes for Logo to move around on the screen in place
of the turtle. To set up your own shape table, deposit the location of the
first element of the table in the address USHAPE. (See section 6.5 for
explanation of Logo addresses.) The size of the turtle or of the created
shape can be changed with the one-byte size code contained in address
SSIZE. The default value, 1, is best for the regular turtle; however, values
of 2 or greater often make user-defined shapes more visible. Unlike the
general Apple shape mechanism, the Logo interface to shapes allows
user-defined shapes to be displayed only at at 0, 90, 180 and 270 degree
headings. The heading at which the shape is displayed is determined by
the quadrant in which the "turtle" is facing and can be changed by
turning the "turtle" with the usual LEFT and RIGHT commands.

The format of shape tables is as described in the Applesoft Reference
Manual, except that the header information in the shape table should be
omitted. Begin each shape table directly with the vectors. Terminate it

1This is in contrast to the Logo implementation for the Texas Instruments 99/4, which
takes advantage of special animation hardware provided by the computer.

54 Logo for the Apple II: Technical Manual

normally.

You can construct a shape table by hand and use .DEPOSIT to store it
in the Logo area reserved for user code, and then set USHAPE and SSIZE.
Note that you can make more than one user-defined shape and switch
between them by changing USHAPE.

The Logo Shape editor
Constructing shape tables is a tedious process. One of the programs

contained on the Logo disk is a "shape editor." This is a Logo program
that enables you to design a shape by drawing it directly on the screen. It
then automatically assembles the shape into a shape table. The shape
editor was written by Henry Minsky . Note that the shape editor is itself a
collection of Logo procedures that work by using .EXAMINE and
.DEPOSIT according to the scheme outlined above. You can read in the
procedures and use them as a guide to writing similar functions.

To use the shape editor, read in the file SHAPE.EDIT and type SETUP.
The file contains a real.time shape editor and functions for changing the
currently displayed turtle shape and its size. To begin designing your own
shape. give the MAKESHAPE command . This takes one input that is to be
the narne of the shape you will design, for example,

MAKESHAPE "BOX

Typing another MAKESHAPE command will cause a new shape to be
defined . You cannot edit previously-defined shapes. If you wish to erase
all shapes and start over, type SETUP again. The following commands
(similar to the editor commands) are available for constructing shapes.

u
D

CTRL-P

CTRL-N

arrow keys

Penup

Pendown

Move up (and draw a vertical line if the pen is down).

Move down (and draw a vertical line if the pen is
down).

Move in the direction of the arrow (and draw a
horizontal line if the pen is down).

,Changing the Turtle Shape 55

CTRL-C

CTRL-G

ESC

1 ... 9

Exit the shape editor and define the shape.

Exit without permanently defining the shape. (You can
set t~e turtle to the shape as defined so far, but the
next time you define a new shape, this one will be lost.)
Use this command to abort definition of a shape if you
wish to start over.

Delete the previous few commands. 2

Typing a number causes the size of the shape to
change . Typing 3 is equivalent to executing SIZE 3. It
is helpful to switch between the size you want and a
larger size, which is easier to see, while designing a
shape.

Once you've defined a turtle shape (BOX, in this example), you can
make the turtle assume that shape by typing SETSHAPE :BOX.

You can change the size in which shapes are shown by using the SIZE
procedure. SIZE 1 is the default.

The SETSHAPE takes one input and changes the turtle to have that
shape . It first hides the turtle, and then shows it. If you want to restore the
turtle to its original triangular shape, type SETSHAPE 0.

The internal procedure which SETSHAPE calls is .SHAPE. It, too, takes
the shape as input , but it doesn 't hide the turtle first. This is useful
because Logo draws and erases the turtle by drawing the turtle shape in
" reverse " mode(i .e., pencolor 6). This implies that if you set the turtle to
some shape , then set the turtle to the a shape with no lines it in, then hide
the turtle and move it, the original _turtle image will remain on the screen,
because "hiding" the empty shape effectively erases nothing .. SHAPE 1
will give the turtle the "null" shape. The following procedures use this
method. The first will stamp a shape that the user specifies. The second
procedure determines the current shape and stamps that. (It uses
USHAPE which is an address that can be read from the file ADDRESSES

2What actually happens is that the previous byte in the shape table is deleted, so that the
previous one, two or three segments are deleted .

56 Logo for the Apple II: Technical Manual

on the utilities disk.) The last procedure stamps the shape at random
places on the screen.

TO ST AMP : SHAPE
.SHAPE 1
HIDE TURTLE
.SHAPE :SHAPE
SHOWTURTLE

END

TOSS
STAMP (.EXAMINE :USHAPE)+256•.EXAMINE :USHAPE+l

END

TO STAMPRANDOM
ss
SETXY (120 - RANDOM 240)(110 - RANDOM 220)
STAMP RANDOM

END

Saving Shapes
To save on disk all the shapes you defined, use the SAVESHAPES

procedure. It takes the name of the file as input. Be sure to use a quote,
just as you would with SAVE.

The following information is very important: Start in a fresh Logo
workspace with no procedures defined. Then read in the shape editor
and define a few shapes. SAVESHAPES "PARTS will create two files.
The first, PARTS.SHAPES, will contain the shape table (the actual
appearance of the shape); the second, PARTS.AUX.LOGO, will have the
names of the shapes and the following procedures: SETSHAPE, .SHAPE,
SIZE, INITSHAPES, and any procedures you have defined. Unless you are
writing low-level procedures for manipulating shapes themselves, you
probably don't want to include any extra procedures in this file.

The •· .AUX" file contains a procedure called INITSHAPES; it
automatically loads and sets up the defined shapes. For a procedure to
use shapes you saved in a file called BLOCKS, your procedure should
include lhe following:

Changing the Turtle Shape

READ "BLOCKS.AUX
IN IT SHAPES

57

For easier maintenance of your program, you should keep the program
that actually makes use of the shapes in a file separate from the shape
files. That way, you can make changes to the shapes and keep them in
the shape files, and make changes to the procedures that use shapes and
keep them in a different file. You don't have to worry about accidently
erasing the procedures or names that the shape system uses. To
accomplish this, you should not define procedures to use shapes while
you're still using the shape editor. If you accidently do, you should edit
the resulting ".AUX" file and separate the procedures into two different
files.

A Sample Session
?GOODBYE
?READ "SHAPE.EDIT
?MAKESHAPE "BLOCK
Define a shape here
?MAKESHAPE "TIRE
Define another shape here
?SAVE.SHAPES "BLOCKS

At this point, Logo will .ask you to place your files disk in the disk drive.
This disk should be the one you want to use to store the shapes and the
program to use them. After Logo saves the shapes, it will ask you to put
the disk containing the shape editor back into the drive . You should then
place the Utilities Disk (or a copy of it) into the drive and press return.
Logo will pause for a while as it reads the shape editor back into memory.

There should now be two new files on the files disk that you used:
BLOCKS.AUX.LOGO and BLOCKS.SHAPES. Type GOODBYE to erase
everything and start over. To regain the shape you created, type

READ "BLOCKS.AUX
INITSHAPES
SET SHAPE : BLOCK

You now have two options : you may write procedures to use these
shapes. and then save everything. That way, all you have to do to read in
the shapes is execute INITSHAPES; however, if you change the shapes in
the file BLOCKS, you mtist erase all the NAMES and read in the new

58 Logo for the Apple II: Technical Manual

BLOCKS.AUX file. The alternative is to start with a fresh workspace by
typing GOODBYE, write the procedures that use the shapes, and include
the READ and INITSHAPES commands in the procedures so the shapes
are read in when the program starts running . When testing the program, it
will bring the shapes into the procedures workspace. Therefore, when
you are satisfied, use ERASE to erase the following; NAMES, SETSHAPE,
.SHAPE, and INITSHAPES. Then save the file. The following paragraph
briefly describes a program that uses this technique of separating the
files.

The Utilities Disk Example: Rocket
On the Utilities Disk, there is a demonstration program called ROCKET.

Type READ "ROCKET and execute the procedure ROCKET. The
ROCKET procedure READs the ROCKET.AUX file (described above), and
calls the procedure INITSHAPES. The INITSHAPES procedure
automatically sets up the shapes.

It will make it easier to use the shape procedures if you follow the
conventions outlined here. Type PO ROCKET to see how it works . To run
it again without loading the file, type SHOW.

Assembly Language Interfaces to Logo 59

Chapter 6
Assembly Language Interfaces to Logo

The Logo system for the Apple has been designed to be both powerful
and easy to use. Writing and executing programs in the Logo language
using the primitives listed in the previous chapter should be sufficient for
most purposes. However , there are situations in which it is desirable to
extend the capabilities of the system by getting direct access to machine
language.

Warning: This chapter · will only be useful/intelligible to people who are
familiar with assembly language programming on the Apple.

The Logo system has various "hooks" built in to it that enable users to
directly access memory locations in the Apple and to interface assembly
IJnguage routines to Logo programs. The Logo Utilities Diskette includes
a 6502 machine language assembler that aids in doing this. Another hook
built in to Logo allows you to create simple animation effects by supplying
a new shape to be displayed in place of the Logo turtle. Another hook
allows you to modify the behavior of the Logo editor so that it can be used
as a regular text editor rather than as a procedure editor and to access
disk files in non -standard ways.

6.1 .. EXAMINE and .DEPOSIT
These two commands are essentially the usual Apple PEEK and POKE

routines .1 .EXAMINE takes an address as an input and returns (as a
number) the byte stored in that address. .DEPOSIT takes two inputs, an
address and a numeric value, and deposits the value in the byte specified
by the address . These commands are useful for communicating with
special -purpose 1/0 devices , especially in cases where the facility
supplied by OUTDEV is insufficient. Needless to say, .DEPOSITing into

1 One difference is that the addresses should always be specified as positive integers.
Apple PEEK and POKE require addresses above 32K to be given as negative numbers.

60 Logo for the Apple II: Technical Manual

arbitrary memory locations can cause Logo to crash or do other unfriendly
things . Note that the addresses used with these commands are ordinary
Logo numbers, which are expressed in base 10, even though it is
customary to think of Apple addresses as written in hexadecimal notation.
For many purposes it would be useful to write a conversion routine that
converts from hexadecima l to base ten.2 That way, you could type, for
example

• EXAMINE HEX "9E

rather than

. EXAMINE 158

When Logo is running, monitor ROM locations are not available. Instead,
these locations correspond to parts of the Logo system stored on the 16K
memory card . The actual contents of the ROM are shadowed by this
memory. Calling .EXAMINE (or .DEPOSIT) with an address which
corresponds to the " Language Card" will cause unpredictable effects.
The 16K memory card occupies locations $C080-$C08F (49280-49295).

6.2. Writing Your Own Machine-Language Routines
You can interface your own machine -language routines to Logo by

using the .CALL primitive . .CALL takes two inputs : the first is the address
of the routine . and the second is an integer input that the routine may
examine. The routine may output an integer or output nothing . The .CALL
primitive always requires two inputs, regardless of whether the user
routine chooses to examine the second one .

. CALL transfers control to the address specified by its first input.
Naturally, before doing this , you should assemble an appropriate routine
and store it at the address. The available memory for user machine code
begins at $99AO and extends to $9AAO. You can do the assembly by hand
and store the routine using .DEPOSIT, but you will find it much more

2Throughout this chapter.we use the convention of specifying hexadecimal numbers as
prefi xed by a dollar sign, e.g., $9E is 158 decimal.

Assembly Language Interfaces to Logo 61

convenient to make use of the Logo assembler described in section 6.3.

When your routine begins executing, the page zero locations NARG1
and NARG1 + 1 contains the first input to .CALL -- which is just the
address of the routine itself. NARG1 + 2 and NARG1 + 3 are guaranteed to
contain zero at the time the routine is called. The routine may use
locations NARG1 through ANSN4 + 3 as temporary storage locations,
without worrying about restoring them before returning. These storage
locations are volatile; that is, Logo may change these locations between
successive calls to your routine. Locations USERPZ through $FF are not
used by Logo and so can be used by your routines as non-volatile, page­
zero storage.

NARG2 through NARG2 + 3 contain the second input to .CALL, stored
as a four-byte fixnum in two's complement form. Thus .CALL ($ "99AO) 3
would result in the following values in memory:

NARG2 NAHG2+1 NARG2+2 NARG2+3
3 0 0 0

NARGI NARGl+l NARG1+2 NARG1+3
$AO $99 0 0

Substituting -1 for 3 would make NARG2 through NARG2 + 3 contain $FF.

To output an integer, stare the integer to be returned (using the above
format) in the four locations with NARG2 through NARG2 + 3, and jump to
location OTPFX2. If the number is stored in some other set of 4
consecutive page-zero variables (such as NARG1), load Y with the
address and jump to OTPFIX.

To output the Logo word "TRUE, jump to OTPTRU; similarly, jumping to
OTPFLS will cause your routine to output "FALSE. To output no value,
simply end the routine with an RTS instruction.

Here is an example which reads the state of the cassette port (by
addressing the cassette input location $C060) and returns "TRUE or
"FALSE, depending on whether there is sound available. The code here
is written in standard 6502 assembler format. To use it you will have to
assemble it by hand and deposit the instructions in memory (but see
section 6.3 below).

62 Logo for the Apple II: Technical Manual

CIN
OTPTRU
OTPFLS
LISTEN:

ON:

ORG $99AO
EQU $C060
EQU <see Addresses.Logo>
EQU <see Addresses.Logo>
LOA CIN
BMI ON ;See Apple II Reference Manual,
JMP OTPFLS
JMP OTPTRU
END

p. 78.

Now you can set the Logo variable LISTEN to the address of the label
LISTEN and execute this new "primitive" by typing

• CALL : LISTEN 0

(Note that an input is needed, even though it is ignored.) This will work just
like a normal primitive or procedure··

PRINT • CALL : LISTEN 0

will print TRUE or FALSE.

When a machine language routine has determined some error condition
that would make it inappropriate to return to the Logo procedure that
called it, it can and jump to PPTTP, which effectively executes the Logo
TOPLEVEL primitive.

6.3. The Logo Assembler

The Logo assembler is a 6502 assembler that is written in the Logo
language . This program was designed and written by Leigh Klotz. The
assembler is stored on the Logo utilities disk in the file ASSEMBLER.3 To
use the assembler, simply read this file into Logo as you would any normal
Logo file and then run a procedure called SETUP:

READ "ASSEMBLER
SETUP

To assemble a routine, you write the routine in the format of a Logo
procedure, using the Logo editor. For example, the tape cassette

3The ASSEMBLER program in turn reads data stored on the Logo disk in auxiliary files
AMODES and OPCODES.

Assembly Language Interfaces to Logo

example on page 62 would be written as the procedure:
TO CASSETTE.CODE

[MAKE "CIN $ "C060]
[MAKE "OTPFLS <see Addresses.Logo>]
[MAKE "OTPTRU <see Addresses.Logo>]
LISTEN: LOA CIN

BMI ON
JMP OTPFLS

ON: JMP OTPTRU
END

63

Notice that there are differences in syntax between the input accepted by
the Logo assembler and the standard 6502 assembler. The syntax of code
for the assembler is explained in section 6.3.2.

Once you have defined the procedure you now assemble it by typing

ASSEMBLE "CASSETTE.CODE

ASSEMBLE will now assemble the instructions and place them in the
default location ($99AO). Also, any labels in the code (such as LISTEN,
above) will now be defined as Logo symbols. So now you can call the
routine by

. CALL : LISTEN 0

6 .3.1. Using the Assembler to Write 1/0 Routines

While it is possible to use the .EXAMINE and .DEPOSIT primitives to
operate most peripheral devices, machine language routines are required
for others. If the peripheral device is one which has a built in "driver,"
then you can use the OUTDEV primitive. OUTDEV takes as input a slot
number 1 through 7 as an input and directs the Logo character input or
output routines to the device at the specified slot.

Some devices, however, may require special routines to handle input
and output. If you specify OUTDEV with an input greater than 8, the input
will be interpreted as the address of a routine in memory that should be
called in place of Logo's regular character input or output routine.

Many peripherals use a technique called "handshaking" to assure that
the computer does not try to send data to them (or read data from them)
too fast. The following program will interface Logo to such a device. We

64 Logo for the Apple II: Technical Manual

assume that STATUS is the memory-mapped 1/0 address on the
peripheral card indicating the status of the device. In this case, bit 7 is
high if the device is ready to receive a character. DAT A is the address
where bytes to be sent should be stored.

Once you have assembled this routine, you may access the peripheral
by executing OUTDEV :TYOWAIT.

TO CODE
[MAKE "STATUS <address>]
[MAKE "DATA <address>]
TYOWAIT: LOX· STATUS

END

BPL TYOWAIT
STA DATA
RTS

A character output routine like this, which is meant to be called via
OUTDEV, should expect that the A register will contain the byte to be
output.

Here is another example output routine. This one causes all I
characters to be printed as spaces:

TO IOCODE
XCLOUT: CMP # "I

BNE OUTCHAR
LOA# 32

OUTCHAR: JMP COUT
END

6.3 .2. Syntax of 1nput to the Assembler

In order to take advantage of some aspects of the Logo language, the
Logo assembler uses a format slightly different from most assemblers.
Each assembly-language program is stored as. a Logo procedure,
although this procedure cannot be executed directly. The following
paragraphs concisely describe the Logo assembler format; a study of the
examples provided will better explain how to write assembly language
programs to interface with Logo.

Labels within the program are indicated by a postfixed colon.
References to page-zero memory locations that are not indirect -indexed
(LOA (FOO ,X)) or indexed-indirect (LOA (FOO) ,Y) must have an

Assembly Language Interfaces to Logo 65

exclamation point before the label or expression that is on page zero. (If
you forget the exclamation po1nt, the instruction will be coded as absolute
references, and will occupy one more byte .) There must be a space
following every ! (indicating page.zero reference) or # (indicating
immediate mode), and after every label or reference to a label. The
operand of an instruction may be a word (a reference to a label), a
number, a list , or a single-letter word beginning with a quote. If the latter
case, the operand is the ASCII value of the letter.

Anything inside a list is evaluated as a regular Logo expression. If the
list is the first thing on the line, it is not allowed to output a value, and is
evaluated for "side-effect" (label assignment) only . If it is an operand
(follows the name of an instruction), it is expected to output something.
Thus , arithmetic expressions such as :FOO+ 3, where FOO is a label or
regular Logo symbol, may be used provided they are enclosed in square
brackets. Of course, references to the values of labels inside square
brackets must have dots (:) before them, and spaces have their normal
significance. All labels are Logo variables. DOT is a Logo variable whose
value is the current location being assembled.

The HIS and LOS procedures, which return respectively the high and
low eight bits of a number, are also useful inside lists. Use them like this:

LOA# [LOS :SOURCE]
STA ! DEST
LOA# [HIS :SOURCE]
STA! [:DEST+l]

The $ procedure takes as input a word that is a hexadecimal number
and outputs the number that it represents. Thus, hex numbers may be
included in programs by placing a call to the $ inside a list. Use the MAKE
primitive to assign values to labels .

If you use octal or binary numbers a lot, you might want to change the
value of the Logo word $BASE. This is the base used by the $ procedure.
Changing it to 2 gives you binary, and so on. You can do this within the
source for an assembly language program with [MAKE "$BASE 2].

You can assemble arbitrary bytes into code by placing the number on
the line with nothing (except perhaps a label) preceding it.

Here is a simple program in normal assemuler syntax:

66

ORG
NARG2
BELL
PASS:

YES:
END

EQU $99AO
EQU $9E
EQU $1C40
LOA NARG2
CMP #$04
BEQ YES
RTS
JMP BELL

Logo for the Apple II: Technical Manual

And in the Logo assembler syntax:
TO CODE
PASS: LOA! NARG2

CMP # [$ "04]
BEQ YES
RTS

YES: JMP BELL
END

; ! means page zero . Note space after !.

To assemble this program . load in the assembler c1nd type SETUP and
READ "ADDRESSES. The f, .,owing will assembl~ the above program,
with a default origin of $99A0.4

ASSEMBLE "CODE

This will generate a listing file on the screen and deposit the code in
memory . The labels are available as Logo symbols for use with .CALL,
.DEPOSIT, and .EXAMINE. To· invoke the above routine, type

.CALL :PASS 4

to beep the bell , and .CALL :PASS <anything but 4> to do nothing. This is
sort of a secret " password" pro·gram.

If you try to assemble long programs , you may run out of memory. One
way to get more memory is to load in only those instructions that your
program uses. In a fresh Logo, read in the OPCODES file from the utilities
disk and erase the instructions (using ERNAME "BIT , for example) that
you don't plan to use. Then, rewrite this as the new OPCODES file .5

4To assemble at some other start address, assign the value to the Logo variable ORG.

50t course . you should not do this on the original Logo disk . Save copies of the original
assembler files on an ordinary Logo file disk and run the assembler using these copies.

Assembly Language Interfaces to Logo 67

6.3.3. Saving Assembled Routines on Disk

With the DOS primitive, you can save the actual machine code that the
assembler generates. The following will save your assembled routines in
a file called ROUTINES.

DOS [BSAVE ROUTINES.BIN,A$99AO,L$100]
To load the routines into Logo, type

DOS [BLOAD ROUTINES.BIN]

The BIN is short for BINARY, and might help you remember that the file
is a saved machine·language file. Keep in mind that in addition to saving
the actual machine code, you should save the Logo variables that define
the addresses used by .CALL. One way to do this is to type EDIT NAMES,
then exit the editor with CTRL-G and execute ERASE ALL. Re-enter the
editor and edit the definitions to include only the ones you still want. Then
exit the editor with CTRL-C. Save the file by typing SAVE "ROUTINES.
Then, to reload your routine, type READ "ROUTINES and DOS [BLOAD
ROUTINES].

6.4. Example: Generating music

This section presents an example of an assembly language extension to
Logo. Although this version of Logo has no primitives for playing music,
you can use the .CALL feature to interface a machine-language routine to
produce pitches with the Apple II speaker. The speaker produces a
narrow pulse each time the location to which it is mapped, $C030 (49200),
is referenced . Try repeatedly reading this location from Logo using
.EXAMINE.6

In order to play pitches, a program has to examine this location many
times each second. The number of clicks produced per second is called
the frequency . To make the pitches sound equally spaced, the ratio of

6oue to the way the speaker is interlaced , depositing in the location has no effect.
Additionally, the speaker generate clicks only on every other reference. This brings the pitch
down one whole octave , but does not affect the intervals of pitches played .

68 Logo for the Apple II: Technical Manual

successive frequencies must be constant; that is, the frequencies must be
in geometric progression. In Western music, which has twelve pitches ~to
the octave, this constant must be such that the frequency doubles after
twelve pitches; thus, the ratio of successive pitches in the scale is the
twelfth root of 2, or approximately 1.05946.

Closely related to the concept of frequency is that of period. The period
of a pitch is simply the reciprocal of its frequency. Given the period, it is
possible to play the corresponding pitch by repeatedly generating a
narrow pulse (click), and then waiting for the period to expire. The
program which does that will have to be written in machine language,
since it must run very quickly.

To make Logo play music, we need to write some procedures. Let's say
there should be a procedure called "PLAY," and that it should take two
inputs: a list of pitches and a corresponding list of durations . The pitches
should be numbers specifying the number of chromatic steps above or
below a center pitch. The durations should be lengths of time for the note
to sound, with 1 being the shortest, 2 being twice as long, and so on.

TO PLAY : PITCIIES :OURS
Ir : PITCHES=[] STOP
PLAY. NOTE (FIRST : PITCHES) (FIRST :OURS)
PLAY (UF :PITCIIES) (BF :DU8S)

END

Even though we're not exactly sure how notes will be played, we can
assume that PLAY.NOTE actually plays a note (given the pitch number
and duration) because that's what we're going to write it to do.

Since the notes are played by a machine-language program that
requires the period of the pitch, we must find some way of associating the
periods of various pitches with their representation in the PLAY
procedure . A table would be one good way of doing this. For each note,
there is an entry in the table that contains the period. We'll construct our
table as Logo words , and have the periods as the things associated with
the names. We'll choose some arbitrary name for this table, and then
have the individual notes be represented by words that begin with the
table name and have the number of the pitch at the end of the name. So, if
we call the table " # " the period for note number 3 is in the Logo variable
called"# 3." We'll assign a special value to mean rest, and use the Logo

Assembly Language Interfaces to Logo 69

variable # R to store this value, so that "R" will cause a rest in the PLAY
procedure.

Additionally, it would be useful to be able to specify notes above or
below the center octave in some convenient notation . We have chosen
postfixed plus and minus signs to indicate different octaves . In inputs to
the PLAY procedure 4 means the fourth pitch above the center tone. 4 +
means the same pitch an octave above it, and 4- the pitch one octave
below. (You can worry about an appropriate notation for extending the
range to more than these three octaves if you wish_.)

The following MAKE.PITCHES procedure associates each pitch with
the proper period. It takes as input the number of the highest octave and
the period of the highest pitch in that octave.

TO MAKE.PITCHES : PERIOD
MAKE.OCTAVE 11 "+ : PERIOD
MAKE.OCTAVE 11 " : PERIOD• 2
MAKE.OCTAVE 11 "- :PERIOD• 4
MAKE "#R 16384

END

TO MAKE.OCTAVE : PITCH :OCTIND : PERIOD
IF :PITCH=O STOP
MAKE (WORD "# :PITCH :OCTIND) :PERIOD
MAKE.OCTAVE :PITCH-1. :OCTIND :PERIOD• 1.0596

END

This is about as far as we can proceed in Logo before we know the
specifics of the implementation of the note-generating ro1,Jtine. This
machine-language routine should sound a note with a specific period for a
certain length of time. As mentioned before, the way to generate a tone
on the Apple speaker is to cause a click , wait for the period to ex,pire, and
keep doing this until the note is supposed to be over.

The heart of our machine language routine will be a subroutine called
CLICK (listed below) . This routine is called repeatedly with the (16 bit)
period in locations PER.H and PER.L. It copies them to another place so
that they will still be valid next time around CLICK is called.

One way to cause notes to have a certain duration would be to call the
CLICK routine a certain number of times . Calling it twice that many times
would result in a note twice as long. That is fine if only one period (pitch)

70 Logo for the Apple II: Technical Manual

is used. Unfortunately, the CLICK routine by its very nature takes a
different amount of time for different periods (i.e., different pitches);
therefore, the routine that plays notes must convert the actual duration to
the number of clicks to generate.

If we pick a base pitch, and scale the durations of all other pitches from
that one, our problems will be solved. The number of times to call the
CLICK routine for a given duration and period is :DURATION •
(:BASE.PERIOD / :PERIOD). This scaling is called normalization. It is
much easier to do the required multiplication and division in Logo than in
machine-language, so we'll calculate this scaling factor in Logo. The
machine- language routine will take this number as an input, and call the
CLICK routine that many times.

Here is the entire machine-language program for playing notes:

Assembly Language Interfaces to Logo

TO MCODE
[MAKE "SPKR $ "C030]
[MAKE "DUR. L :NARG2]
[MAKE "DUR. H :NARG2+1]
[MAKE "PER.L :NARG2+2]
[MAKE "PER.H :NARG2+3]
[MAKE "COUNT.L :USERPZ]
[MAKE "COUNT.H :USERPZ+l]
[(PRINT [STARTING ADDRESS:] :ORG)]
TONE: LOA ! DUR. L

ORA ! DUR.H
BEQ EXIT ;A duration of O means no note.
LOA ! DUR.L
SEC
SBC # 1
STA ! DUR.L
LOA ! OUR.H
SBC # 0
STA ! DUR.H
JSR CLICK
JMP TONE

EXIT: RTS
CLICK: LOA PER. L

STA COUNT.L
LOA PER .H
STA COUNT. H
BIT COUNT.H
BVS PDLOOP
LOA SPKR ;Click

PDLOOP: LOA ! COUNT.L
ORA ! COUNT. H
BEQ EXIT
LOA ! COUNT. L
SEC
SBC# 1
STA ! COUNT. L
LOA ! COUNT.H
SBC # 0 ;propagate carry
STA ! COUNT.H
JMP PDLOOP

[(PRINT "LENGTH: :DOT-:ORG "BYTES.)]
END

71

The loops that make up the body of the CLICK and TONE routines both
have an interesting property: every iteration takes the same amount of
time as every other. Some methods of writing these loops would have
them run faster or slower when DUR.H (or PER.H) was 0. Those methods

72 Logo for the Apple II: Technical Manual

would cause durations of 400 clicks not to be twice as long as durations of
200.

Note that in the CLICK routine there are some instructions that are
outside the loop, and are executed once for each period of the tone. The
time they take has an affect on the pitches produced. It is just like adding
a small amount to every period . To counteract this , we subtract a small
amount from each period. This factor is the FUDGE constant.

Some method of interfacing the machine-language routine to the Logo
procedures is needed. The .CALL primitive is provided for just this
purpose, but allows passing only one input. What we need is a way to
pass both the period (PER.H and PER.L) and the duration (DUR.H and
DUR.L). A careful look will show that this adds up to 32 bits, which is the
number of bits .CALL can pass to the machine -language programs it calls.
If we arrange memory locations so that DUR.L/DUR.H are the low two
bytes of the input to .CALL , and PER.L/PER.H the high two, the following
procedure will give the two inputs to machine-language routines :

TO . CALL.2 :ADDR : INPUTl : INPUT2
.CALL :ADDR (ROUND : INPUT2) + (ROUND : INPUT1)*65536

END

Note the use of the ROUND primitive. Were it not called, non-integer
periods would cause the result of the multiplication not to be a multiple of
65536, interfering with the duratron. The PLAY.NOTE procedure is a
combination of this procedure and the normalization step mentioned
before (The three inputs to .CALL.2 are put on separate lines below, to
make them more readable) :

TO PLAY. NOTE : PERIOD :DURATION
MAKE "PERIOD THING (WORD "# : PERIOD)
. CALL. 2 :TONE

: PERIOD - : FUDGE
(:DURATION• : BASE. PERIOD/ :PERIOD)

END

The Music demonstration program
There are two music-related files on the Utilities Disk. One is a Logo file

called MUSIC, and the other is a file of saved machine-language routines
called MUSIC.BIN. To try out the music demo, type READ "MUSIC and
SETUP. All the procedures shown here are included.

Assembly Language Interfaces to Logo 73

6.5. Useful Memory Addresses

This section contains brief descriptions of addresses in the Logo
program that serve as "hooks" for modifying Logo with .EXAMINE and
.DEPOSIT and for interfacing assembly language programs to Logo as
described in section 6.2. The actual values of the addresses are
contained in a file called ADDRESSES that is included on the Logo utilities
disk . Beware that the actual values of these addresses may change with
new releases of Logo. Executing READ "ADDRESSES in Logo will define
the addresses as normal Logo variables whose values are integers.
(Comments in the file also give the values of the addresses as in
hexadecimal notation.) When using an address, it should be preceded
with the character : as in .EXAMINE :EPOINT.

Page zero locations:

EPOINT

ENDBUF

SAVMOD

BKTFLG

Location of the current character in the edit buffer.
Used by the editor and the EDOUT routine.

The address of the last character in the edit buffer,
plus one . The disk saving routines (see SAVMOD)
save frqm $2000 to the address in this location. See
the example on page 81 .

If the contents of this location is 0, READ and SAVE
work normally . If it is non-zero, SAVE saves whatever
is in the edit buffer (which can be text other than
procedures and names) and READ restores the edit
buffer from disk, but doesn't evaluate it. See section
7.1.

If this location contains 1, then Logo attempts to print
out objects in a manner such that they can be read
back in. This is useful when you are printing to the
EDOUT device. See section 7.3 . All lists will be printed
with brackets around them; none will be printed in
"sentence" form. Funny -pnames will be printed with
their funny quotes . PO NAMES will print out Logo
variables and their values with MAKE "VARIABLE 3

74

NOINTP

CH,CV

OTPDEV

INPDEV

USHAPE

SSIZE

INVFLG

NARG2

NARG1

ANSN4

USERPZ

HIMEM

Logo for the Apple II: Technical Manual

instead of "VARIABLE is 3.

Controls the action of the special "interrupt"
characters CTRL-F, CTRL-G, CTRL-S, CTRL-T, and CTRL·
W. If the location contains zero (the default), these
keys have their normal action in ORA W and NODRAW
mode. If it contains 1, these characters have no
special meaning, and will be recognized by
READCHARACTER. CTRL-Z and CTRL-SHIFT·M are still
enabled. To disable them also, deposit 255 in
NOINTP.

These locations contain the current cursor location, in
columns and rows, respectively. .EXAMINE :CH
outputs the current horizontal cursor position. See the
CURSOR primitive, page 36

Contains the address of the routine currently being
used for character output.

Like OTPDEV, but for character input.

Pointer to user-defined turtle shape. See section 5

Shape size for turtle or user shapes. Default= 1.

Determines whether characters will be white-on-black
(default, contents= 255), black-on-white
(contents= 0), or flashing (contents= 64).

Second input to .CALL. 4 bytes. See section 6.2.

First user-available temporary location. All memory
from here to ANSN4 + 3 is available for user routines.
See section 6.2.

Last user-available temporary location. This and the
next three bytes are free.

First user-available permanent page zero location.
From this location to $FF is not used by Logo.

(.EXAMINE :HIMEM) + 256*(.EXAMINE :HIMEM + 1)
outputs the highest address available for user
machine-language programs. It is set by the

Assembly Language Interfaces to Logo 75

MAXFILES 1 DOS command to $9AA5. See VZZZZZ.

Other useful addresses

OTPFX2

OTPFIX

OTPTRU

OTPFLS

GETRM1

KILRAM

PPTTP

COUT

EDOUT

Jumping to this address will cause the .CALL to output
the integer stored in NARG2 through NARG2 + 3. See
section 6.2.

Like OTPFX2, but return to Logo with value the integer
stored in the four successive bytes starting with the
page-zero location pointed to by the Y register.

Jump to this routine to output "TRUE.

Output "FALSE.

Loading from or storing to this location twice, e.g.,
LDA GETRM1, LDA GETRM1, enables Logo locations
in extended memory and disables Monitor ROM.

Referencing this location enables the Apple monitor
ROM. It is enabled during .CALL execution unless
explicitly disabled.

An al~ernate exit for user machine-language routines.
Jumping to this address runs the Logo primitive
TOPLEVEL (page 35). It is useful for to return to Logo
in this manner when some error condition has
occurred, making it inappropriate to continue
executing .CALLing procedure.

Logo's normal screen character-output routine. Prints
the character in A on the screen.

Routine to place the character in the A register in the
edit buffer. Deposits A in location pointed to by
EPOINT and increments EPOINT. Returns without
doing anything if EPOINT is greater than $3FFF. Can
be used with OUTDEV to cause Logo to place text
directly in the edit buffer. See the example on page
81.

76

PNTBEG

ENDPNT

BELL

HOME

CLREOP

SCROLL

CLREOL

FILLEN

FILBEG

vzzzzz

Logo for the Apple II: Technical Manual

Routine to reset EPOINT to beginning of the edit
buffer. Use before outputting to the buffer (with
OUTDEV :EDOUT) the first time . See the example on
page 81.

Routine to set ENDBUF to EPOINT. Use when finished
printing to the buffer. See PNTBEG, EPOINT,
ENDBUF.

Routine to beep the bell. Use PRINT1 CHAR 7 to beep
from Logo .

Homes the cursor and clears the screen.

Clear from cursor position to end of screen.

Scroll.

Clear to end of line.

Contains length of last file loaded.

Start address of last file loaded.

(.EXAMINE :VZZZZZ) + 256* .EXAMINE :VZZZZZ + 1
outputs the lowest address available for user machine­
language programs. Although this address may be
below $99AO, you should not place code in the
intermediate region , since future releases of Logo may
use that area of memory.

Miscellaneous Information

Chapter 7
Miscellaneous Information

7 .1. Using the Logo System as a Text Editor

77

The Logo system is set up to read and save files that contain Logo
procedures. By modifying the system, one can use Logo to read and save
text files (and thus be able to use the Logo editor purely as a text editor),
to use the disk for temporary storage, and to design "self starting" Logo
programs.

Normally, to enter the editor you type TO followed by the name of a
procedure to be created or edited . To work with text in Logo, it is
necessary for the edit buffer in memory to be empty. Entering the empty
er.lit buffer is achieved by typing TO followed by RETURN. At this point, text
is written and edited in the same way that a procedure is written and
edited. To save the text it is necessary to exit the editor. Instead of typing
CTRL -C , which will define a procedure. CTRL-G is typed. This exits the
editor without making any changes to it. (Note: For this reason , the text
will be saved and printed exactly as it appears . It is not reformatted as
procedures are.) However, if you then edit a procedure, enter graphics
mode. etc., the text will be lost. Therefore, it is necessary to SAVE the
buffer as a file on a disk. As with other files, any name can be used, such
as SA VE "MYFILE . However , SA VE needs to be used differently than
usual as described below . To make this easier , there is a TEXTEDIT file
on the Utilities Disk which incorporates these concepts. For an
explanation of TEXTEDIT, see the section on the Utility Disk.

Important: The SAVE primitive normally saves the names and
procedures in the workspace by placing them in the edit buffer, and then
saving the buffer on disk. If you want to write arbitrary text on disk to be
loaded back into the edit buffer without being evaluated , you can set the
" save mode" flag; it controls the action of READ and SAVE. Normally the
memory location SAVMOD contains zero. When you deposit any non-zero
number, SAVE will save the previous contents of the edit buffer (rather
than saving workspace), and READ will not evaluate the edit buffer after

78 Logo for the Apple !I: Technical Manual

reading it in from disk. Nothing in Logo but GOODBYE resets this flag.
The actual address of the flag may be found in the file ADDRESSES on the
Utilities Disk, which can be accessed by typing READ "ADDRESSES. This
should be done before creating the text, or it will be lost. After CTRL-G is
typed and before the file is saved, you should type

.DEPOSIT :SAVMOD 1

If you are going to use the Logo procedure editor as a text editor for an
entire session , you might want to type this in at the beginning. If you
should want to read or save some procedures (or names), just type

.DEPOSIT :SAVMOD 0

and things will be back to normal.

To get the file back to work on at a later date, READ "ADDRESSES from
the utilities disk, type .DEPOSIT :SAVMOD 1, and READ "MYFILE from
your own disk. Then type ED followed by a RETURN. Do not type TO after
reading the file or you will start in a new empty buffer and have to read in
the file again .

7. 1 .1. Printing Files

Were there no means to print files , the Logo screen editor would be
useless for editing text. The following procedures will print the contents
of the edit buffer to the peripheral in slot SLOT. Before using it, you will
need to make ENDBUF have the value listed in the Logo ADDRESSES file.

TO HARDCOPY
OUTDEV : SLOT
PRINTMEM 8192 256*(. EXAMINE :ENDBUF+l)+.EXAMINE :ENDBUF
OUTDEV 0

END

TO PRINTMEM :FROM :TO
IF : FROM> :TO STOP
PRlNTl CHAR .EXAMINE :FROM
PRINTMEM :FROM+l :TO

END

Immediately after READing in a file, typing HARDCOPY will print the
contents of the file. If you have been using the Logo screen editor as a

Miscellaneous Information 79

text editor , typing HARDCOPY after typing the CTRL-G editor command will
print the contents of the edit buffer.

This method is not the most efficient one for printing listings of
programs . See page 17.

7 .2. Self-starting files

You can use SAVMOD to append arbitrary text to the end of procedures
and names to be saved on disk . This is useful if you have a program that
you want to start automatically every time a certain file is loaded in. For
example , suppose you want a procedure called SETUP to be run
automatically every time you read in the file called GAME. This can be
accomplished by arranging things so that the command SETUP is
executed automatically each time the GAME file is read in.

To do this. define all the procedures needed for GAME. Type EDIT ALL
to get the entire workspace into the edit buffer . Then, go to the end of the
buffer (using CTRL-F) and insert commands you want executed directly
(SETUP, for example). Then, type CTRL-G to exit the editor and then type

.DEPOSIT :SAVMOO 1
SAVE "GAME
. DEPOSIT :SAVMOO 0

Now, whenever the GAME file is loaded , the procedures will be defined
and the SETUP instruction that you appended to the end of the edit buffer
will be executed .

80 Logo for the Apple II: Technical Manual

7.3. Printing to Disk Files

Another use of SAVMOD is to enable you to write Logo programs that
create Apple DOS Binary files. Since this implementation of Logo uses
binary files to store procedures, you can write text to a file and have Logo
read it in as a program later. Normally, the DEFINE primitive (31) is better
for defining procedures; however, certain applications call for printing the
text of procedures into a file. For example, a procedure that would save a
list of procedures in a given file could use the following protocol for
writing to the disk file. (The PSAVE program on the utilities disk uses this
method.)

Since this implementation of Logo doesn't support arbitrary reading
from disk, these procedures are useful only for a particular set of
applications, and are printed here mostly for information purposes.

The following Logo procedures supply a DPRINT facility for "printing"
to disk files. To use it, execute OPEN with the name of the file as input.
Then, use the DPRINT command to print to the file buffer. To close the
file, type CLOSE. This will save things on the disk in the file that is
currently "open." You cannot use the editor or graphics while a file is
open, nor can you print more than 8192 characters. Any extra characters
will be ignored.

Miscellaneous Information

TO OPEN : FILE
MAKE "OPEN.FILE :FILE
. CALL : PNTBEG 0

END

TO DPRINT :THING
OUTDEV :EDOUT
PRINT :THING
OUTDEV 0

END

TO CLOSE
. CALL :ENDPNT 0
.DEPOSIT :SAVMOD 1
SAVE :OPEN.FILE
ERNAME "OPEN. FILE
.DEPOSIT :SAVMOD 0

END

TO OPEN.FOR.APPEND :FILE
MAKE "OPEN. FILE : FILE
.DEPOSIT :SAVMOD 1
READ :FILE
.DEPOSIT :SAVMOD 0

;SAVMOD, PNTBEG, EDOUT, EPOINT,
;ENDBUF, and ENDPNT are found
;in the ADDRESSES file.

;updates end-of-buffer pointer .

. DEPOSIT : EPOINT . EXAMINE : ENDBUF

. DEPOSIT : EPOINT +1 . EXAMINE : ENDBUF+l
END

81

For assembly-language programmers: The location ENDBUF is Logo's
end-of-edit-buffer pointer. The edit buffer begins at location $2000, and
extends to $3FFF. PNTBEG merely sets ENDBUF to $2000. EDOUT is a
routine that takes a chara~ter in A and places it at the location pointed to
by EPOINT, and increments EPOINT. The disk saving routine saves from
$2000 to ENDBUF, so CLOSE has to update ENDBUF from EPOINT by
calling the ENDPNT routine .

If you are writing out a file that Logo should be able to read back in and
execute or interpret as data, then you probably want brackets to be
printed around toplevel lists . That is to say, Logo normally behaves like
this:

PRINT [1 2 [AB] 3]
1 2 [AB] 3

but you probably would rather have it behave like this:

82

PRINT [1 2 [AB] 3]
[1 2 [A BJ 3]

Logo for the Apple II: Technical Manual

Deposit 1 in location BKTFLG to obtain this feature, and restore it to O to
get back the default behavior. 1 The .DEPOSITs should be done at the
beginning and end of the DPRINT routine, so as not to interfere with other
Logo printing operations.

Additionally, BKTFLG ,eontrols the action of PO NAMES. If you execute
a PO NAMES while BKTFLG contains 1, then the names will be printed out
in this form:

MAKE "NUM 259

7.4. Various System Parameters

This section contains various esoteric information about Logo and
about this specific implementation. It is certainly not necessary to know
what is presented here in order to use Logo; these topics are covered for
the curious.

The Graphics Screen
When pointing straight up, the turtle can go 121 steps before wrapping

around to the bottom of the screen. It can go 120 steps downward before
wrapping around to the top . It can go 140 steps when pointing the the left,
and 140 when going to the right. If you change the aspect ratio (see the
.ASPECT primitive, page 40), then the allowable vertical range will
change, but the horizontal range will remain the same.

1 Besides using this feature in writing disk files, you may also find it convenient to have
Logo print top -level brackets when you are dealing with list processing applications. That
way, a list consisting of a single word will not be printed in the same way as the word itself.

Miscellaneous Information 83

Numbers
The smallest number on which Logo can perform operations is 1N38,

and the largest is 9.9999E38. The largest positive number which is not
"floating point" is 2147483647, and the largest negative is -214783647.

ASCII Values
There is a correspondence between the characters available in the

Logo character set and the numbers 0-255. The ASCII primitive, if given a
word of one letter, outputs the number associated with that letter. The
CHAR primitive is the inverse, returning a single-letter word. The
character represented by O (often called "null") is special in Logo: it
represents the empty word. Just as SENTENCE ignores empty lists as
input, WORD ignores the empty word. It is impossible to make a word
which contains the empty word, unless that word is itself the empty word.

The READCHARACTER primitive, abbreviated RC, reads a key from the
keyboard and outputs a single-letter word. There are certain "interrupt'
keys that will never be output by RC. These are CTRL-F, CTRL-S, CTRL-T,
CTRL-SHIFT-M, CTAL-W, CTRL-Z, and CTRL-G. The functions these keys
provide are available whenever Logo is in draw or nodraw mode. The
following table shows the ~SCII values of selected keys. To find out the
ASCII value of any key, type PRINT ASCII RC, and type the key.

Key ASCII Value

ESC 27

LEFT ARROW 8

RIGHT ARROW 21

CTRL-SHIFT-P 95

CTRL-SHIFT-N 30

Sometimes it is useful to be able to disallow CTRL-G, or to use some
interrupt character for purposes other than the function to which it is
assigned. For these cases, Logo provides a hook for turning off the
special meanings of all the above mentioned interrupt characters, except
for CTRL·Z and CTAL-SHIFT-M .. DEPOSITing 1 in location NOINTP disables

84 Logo for the Apple II: Technical Manual

interrupt characters. 2 Deposit O to re.enable them. See page 74 for a
discussion of special memory locations.

When interrupt characters have been disabled, the READCHARACTER
primitive will output on any key pressed (except of course, CTRL·Z and
CTRL-SHIFT ·M). A typical use of this feature is a system like the INSTANT
program included on the Logo Utilities Disk. The program could disable
interrupt characters and assign its own meanings to the characters
normally reserved for special immediate actions in Logo.

Another occasion where disabling interrupts is useful is in procedures
which do things which must be undone before returning to toplevel. If the
user presses CTRL-G during the execution of a procedure which
temporarily changes OUTDEV to some other device, all output from then
on3 would be directed to the alternate device. The following procedure,
which uses the NOINTP feature, can be executed without fear of causing
"STOPPED!" or "PAUSE" messages to be sent to the device.

TO TCMD :CMD :ARG
.DE.POSIT :NOINTP 255
OUTDEV 7 ;device in slot 7.
(PRINT : CMD : ARG)
OUTDEV 0
.DEPOSIT :NOINTP 0
END

Line length
Lines typed in to Logo in t~e line editor may not be more than 256

characters long. Additionally, the list which is input to RUN and REPEAT,
and each sub-list in the second input to DEFINE must abide by this
restriction.

Lines typed in in the screen editor (as with TO procedurename) may be
of any length, as long as it fits in the edit buffer. Similarly, lines read in
from disk files may be of any length.

2.oEPOSITING 255 in the location will disable all interrupt characters; be careful.

3until another OUTDEV or CTRL·SHIFT·M.

Miscellaneous Information 85

The edit buffer is 8192 characters long.

Storage in logo
Logo stores procedures much more efficiently than most other

languages. Each procedure is stored as a list of lines.4 The lines are lists
of other lists and words. Each word takes up the same amount of space
every time it is used, no matter how many characters it has. Thus, there is
almost no penalty for using long, descriptive procedure and variable
names.

When Logo runs out of storage space, it enters a process called
garbage collection . This simply means that Logo is finding out what parts
of memory are not being used, and makes a big list of all of them. Then,
when Logo needs to use a memory location, it takes it off of this list.

Since Logo can't do anything else (like run your procedures) when it is
garbage collecting, the process can interfere with certain programs where
real-time response is important. If this becomes annoying, place calls to
the .GCOLL primitive at natural pauses in the program.

7.5. Memory Organization Chart

This chart describes how the Logo system uses the available address
space in the Apple II.

4 Actually , this implementation of Logo usually stores procedures as arrays of arrays, since
that method takes half as much space; however , when there isn't enough contiguous
memory, Logo uses the list -of -lists method . It is possible for the curious to tell how
procedures are stored : If each line is indented one space , the procedure is stored in the
array form . If not, it is stored in the rarer list form . This information is completely arcane .

86 Logo for the Apple II: Technical Manual

Nil: $0000 - $0003: $ 3 bytes fhe empty list.
Mi SC. : $0004 - $07FF: $ 7FC, bytes Buffers and impure.
Stacks: $0800 - $1BF5: $13F6 bytes Stacks (PDL, VDPL)
Vectors: $1BFC - $113FF: $ A bytes Re-entry addresses
Othercode : $1(00 - $1FFF: $ 400 bytes I/0 subroutines
Buffer: $2000 - $3FFf: $2000 bytes Editor/graphics buffer
Logo: $4000 - $999F: $599F bytes (23K bytes) Logo code
User: $99AO - $9AA!i: $ 105 bytes User Machine Code
DOS: $9AA6 - $llFFF: $255F bytes DOS code, buffers
1/0: $(000 - $CFFF: $1000 bytes Mapped I/0 addresses
Nodearray: $0000 - $r65F: $2660 bytes (2456. nodes) Nodespace
Typearray: $F660 - $FFF7: $ 998 bytes (2456. bytes) Type-codes
Ghostmem: $DODO - $DFFF: $1000 bytes Static storage
Unused: $FFF8 - $FFF9: $ 2 bytes
Intrpts: $FHA - $FFFF: $ 6 bytes Interrupt vectors

Index

Index

• 28

+ 28

- 28

.ASPECT 40

.BPT 40

.CALL 40, 60

.CONTENTS 41

.DEPOSIT 41, 59

.EXAMINE 41, 59

.GCOLL 41

.NODES 41

I 28

; 41

< 28

= 29

> 28

Addresses, useful 73
ALLOF 33
Animal 50

ANYOF 33
Arcs 47

Arrow keys 4, 15

ASCII primitive 36
ASCII values, table of selected 83
ATAN 28

BACK 25
BACKGROUND 20, 25

Beep 76

87

88

Bell 76

BF 29
BG 20, 25

BK 25
BL 29
Brackets 4
Bugs 6
BUTFIRST 29
BUTLAST 29

CATALOG 22, 38
Catalog, Utilites 43
CHAR 36, 83
Characters, interrupt 83
Circles 47
CLEARINPUT 36
CLEARSCREEN 25
CLEARTEXT 36
co 39
Color 20
Commands, editing 14

CONTINUE 39
Control characters 4, 11

Coordinates, graphics 82
cos 28
Cosine 28
cs 25
CTRL key 4
Ctrl-A 15
Ctrl -B 15
Ctrl-C 10, 15
Ctrl-D 15
Ctrl-E 15
Ctrl-F 11, 12, 15, 25, 83
Ctrl-G 10, 12, 15, 83
Ctrl-K 15
Ctrl-L 15
Ctrl-N 15
Ctrl-0 15
Ctrl -P 16
Ctrl-S 11, 12, 27, 83

Ctrl -shift -M 12, 16, 36, 83
Ctrl -shift-P 12

Ctrl-T 11, 12, 27, 83

Logo for the Apple II: Technical Manual

Index

Ctrl-W 12, 83
Ctrl-Z 12, 83
Cursor 9, 36
CURSOR program 46

DEFINE 31
Demonstration files 43
Diskette, Utilities 43
DOS 38
DPRINT 47
DRAW 25
Draw mode 10

ED 32

Edit 12, 31
Edit mode 9
Editing Commands 14
ELSE 33
Empty list 29
Empty word 29
END 32
ER 32
ERASE 32
ERASEFILE 22, 38
ERASEPICT 23, 38
ERNAME 32
ESC key 4, 15

FD 25
Files 21
FIRST 30
FORWARD 25
FPUT 30
FULLSCREEN 11, 25
Fullscreen mode 11

GO 34
GOODBYE 34
Grappler 18

Hain, Stephen 1
Hardcopy 17
HEADING 25
HIDETURTLE 25

89

90

HOME 25

HT 25

IDS Color Printer 19
IF 34
IFF 34
IFFALSE 34

IFT 34
IFTRUE 34
INTEGER 28

Interrupt Characters 83

Keys, editing 14
Klotz, Leigh 1

LAST 30
LEFT 26
LIST 30
LIST? 30
Listings 17
Logo, starting 5
LPUT 30
LT 26

MAKE 33

Logo for the Apple !I: Technical Manual

Memory, addresses of interesting locations in 73
Minsky, Henry 54
Mocies 9
Music 67

ND 10, 26
NODRAW 10, 26
Nodraw mode 9
NOT 34
NOTRACE 39
NOWRAP 26
NUMBER? 28

OP 35
OPCODES 66
OUTDEV 16, 36, 63

OUTPUT 34

PADDLE 36

Index

PADDLEBUTTON 36

PAUSE 39
PC 20, 26
PD 26
PENCOLOR 20, 26
PENDOWN 26
PENUP 26
Pictures, printing 18
Pictures, saving on disk 23
PO 39

POTS 39
PR 37
Primitives, descriptions of 25
PRINT 37
PRINT1 37
Printers 17
Printing 17
PRINTOUT 38
Procedures.Printing 17
PU 26

QUOTIENT 28

RANDOM 28
RANDOMIZE 29
RC 37, 83
RC? 37
READ 22, 39
READCHARACTER 37, 83
READPICT 23, 39
REMAINDER 29
REPEAT 35
REPFAT key 4
REQUEST 37
RESET key 5
Restarting Logo 40
RIGHT 26
ROUND 29
RQ 37
RT 26
RUN 35

SAVE 22, 39

SAVEPICT 23, 39

91

92

SE 31

SENTENCE 30
SETH 26
SETHEADING 26

Logo for the Apple II: Technical Manual

SETSHAPE, in shape editor 55
SETX 26
SETXY 26
SETY 26
Shapes 53
Shapes, editing 54
SHIFT key 3
SHOWTURTLE 26
SIN 29
Sine 29
SIZE, in shape editor 55
Sobalvarro, Patrick 1
SPLITSCREEN 11, 27
Splitscre en mode 10
SQRT 29
ST 26
STOP 35
System bugs 6

TEST 34
TEXT 32
TEXTEDIT 46
TEXTSCREEN 27
THEN 34
THING 33
THING? 33
Tintinabulation 76
TO 32
TOPLEVEL 35
TOWARDS 27
TRACE 39
TS 27

Turtle, floor 48
TURTLESTATE 27

Utilities Disk 43

WORD 31
WORD? 31
WRAP 27

Index

XCOR 27

YCOR 27

93

() -

(
I

Terrapin, Inc.
222 Third Street
Cambridge, Massachusetts 02142
(617) 492-8816

t

	Logo for the Apple II Technical Manual
	Table of Contents
	Changes for Terrapin Logo Version 3.0
	Preface
	Chapter 1: Preparing to Use Logo
	Chapter 2: Use of the Logo System
	Chapter 3: Logo System Primitives
	Chapter 4: The Utilities Disk
	Chapter 5: Changing the Turtle Shape
	Chapter 6: Assembly Language Interfaces to Logo
	Chapter 7: Miscellaneous Information
	Index

